Ta_{2}NiSe_{5} is one of the most promising materials for hosting an excitonic insulator ground state. While a number of experimental observations have been interpreted in this way, the precise nature of the symmetry breaking occurring in Ta_{2}NiSe_{5}, the electronic order parameter, and a realistic microscopic description of the transition mechanism are, however, missing. By a symmetry analysis based on first-principles calculations, we uncover the discrete lattice symmetries which are broken at the transition. We identify a purely electronic order parameter of excitonic nature that breaks these discrete crystal symmetries and contributes to the experimentally observed lattice distortion from an orthorombic to a monoclinic phase. Our results provide a theoretical framework to understand and analyze the excitonic transition in Ta_{2}NiSe_{5} and settle the fundamental questions about symmetry breaking governing the spontaneous formation of excitonic insulating phases in solid-state materials.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.124.197601DOI Listing

Publication Analysis

Top Keywords

symmetry breaking
12
nature symmetry
8
excitonic insulator
8
transition ta_{2}nise_{5}
8
electronic order
8
order parameter
8
excitonic
5
breaking excitonic
4
transition
4
insulator transition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!