In the context of quantum metrology, optical cavity-QED platforms have primarily been focused on the generation of entangled atomic spin states useful for next-generation frequency and time standards. Here, we report a complementary application: the use of optical cavities to generate nonclassical states of light for electric field sensing below the standard quantum limit. We show that cooperative atom-light interactions in the strong collective coupling regime can be used to engineer generalized atom-light cat states which enable quantum enhanced sensing of small displacements of the cavity field even in the presence of photon loss. We demonstrate that metrological gains of 10-20 dB below the standard quantum limit are within reach for current cavity-QED systems operating with long-lived alkaline-earth atoms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.124.193602 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!