Carrier Recombination Processes in GaAs Wafers Passivated by Wet Nitridation.

ACS Appl Mater Interfaces

NanoLund and Division of Chemical Physics, Lund University, Box 124, 221 00 Lund, Sweden.

Published: June 2020

As one of the successful approaches to GaAs surface passivation, wet-chemical nitridation is applied here to relate the effect of surface passivation to carrier recombination processes in bulk GaAs. By combining time-resolved photoluminescence and optical pump-THz probe measurements, we found that surface hole trapping dominates the decay of photoluminescence, while photoconductivity dynamics is limited by surface electron trapping. Compared to untreated sample dynamics, the optimized nitridation reduces hole- and electron-trapping rate by at least 2.6 and 3 times, respectively. Our results indicate that under ambient conditions, recovery of the fast hole trapping due to the oxide regrowth at the deoxidized GaAs surface takes tens of hours, while it is effectively inhibited by surface nitridation. Our study demonstrates that surface nitridation stabilizes the GaAs surface via reduction of both electron- and hole-trapping rates, which results in chemical and electronical passivation of the bulk GaAs surface.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7467545PMC
http://dx.doi.org/10.1021/acsami.0c04892DOI Listing

Publication Analysis

Top Keywords

gaas surface
16
surface
9
carrier recombination
8
recombination processes
8
surface passivation
8
bulk gaas
8
hole trapping
8
surface nitridation
8
gaas
6
nitridation
5

Similar Publications

To date, III-V semiconductor-based tandem devices with GaInP top photoabsorbers show the highest solar-to-electricity or solar-to-fuel conversion efficiencies. In photoelectrochemical (PEC) cells, however, III-V semiconductors are sensitive, in terms of photochemical stability and, therefore, require suitable functional layers for electronic and chemical passivation. GaN films are discussed as promising options for this purpose.

View Article and Find Full Text PDF

GaAs Solar Cells Grown Directly on V-Groove Si Substrates.

ACS Appl Mater Interfaces

January 2025

National Renewable Energy Laboratory, Golden, Colorado 80401, United States.

The direct epitaxial growth of high-quality III-V semiconductors on Si is a challenging materials science problem with a number of applications in optoelectronic devices, such as solar cells and on-chip lasers. We report the reduction of dislocation density in GaAs solar cells grown directly on nanopatterned V-groove Si substrates by metal-organic vapor-phase epitaxy. Starting from a template of GaP on V-groove Si, we achieved a low threading dislocation density (TDD) of 3 × 10 cm in the GaAs by performing thermal cycle annealing of the GaAs followed by growth of InGaAs dislocation filter layers.

View Article and Find Full Text PDF

Precise material design and surface engineering play a crucial role in enhancing the performance of optoelectronic devices. These efforts are undertaken to particularly control the optoelectronic properties and regulate charge carrier dynamics at the surface and interface. In this study, we used ultrafast scanning electron microscopy (USEM), which is a powerful and highly sensitive surface tool that provides unique information about the photoactive charge dynamics of material surfaces selectively and spontaneously in real time and space in high spatial and temporal resolution.

View Article and Find Full Text PDF

Measuring complex SFG: Characterizing a phase reference.

J Chem Phys

December 2024

Tufts University, Laboratory for Water and Surface Studies, Department of Chemistry, 62 Talbot Ave., Medford, Massachusetts 02155, USA.

Reactions and interactions at interfaces play pivotal roles in processes ranging from atmospheric aerosols influencing climate to battery electrodes determining charge-discharge rates to defects in catalysts controlling the fate of reactants to the outcome of biological processes at membrane interfaces. Tools to probe these surfaces at the atomic-molecular level are thus critical. Chief among non-invasive probes is the vibrational spectroscopy sum frequency generation (SFG).

View Article and Find Full Text PDF
Article Synopsis
  • * The research highlights that both the nucleation and growth stages of the ZnS films are significantly affected by the type of Zn precursor used, and emphasizes the importance of early film formation stages on overall film quality.
  • * Techniques like X-ray photoelectron spectroscopy and transmission electron microscopy reveal that increased surface oxidation during the early stages can prevent solution desorption, and an analysis of crack formation provides insights into the growth process of the films based on different precursors.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!