Patients with acute myeloid leukemia (AML) evolving from myelodysplastic syndrome (MDS) or higher-risk MDS have limited treatment options and poor prognosis. Our previous single-center study of decitabine followed by low dose idarubicin and cytarabine (D-IA) in patients with myeloid neoplasms showed promising primary results. We therefore conducted a multicenter study of D-IA regimen in AML evolving from MDS and higher-risk MDS. Patients with AML evolving from MDS or refractory anemia with excess blasts type 2 (RAEB-2) (based on the 2008 WHO classification) were included. The D-IA regimen (decitabine, 20 mg/m daily, days 1 to 3; idarubicin, 6 mg/m daily, days 4 to 6; cytarabine 25 mg/m every 12 hours, days 4 to 8; granulocyte colony stimulating factor [G-CSF], 5 μg/kg, from day 4 until neutrophil count increased to 1.0 × 10 /L) was administered as induction chemotherapy. Seventy-one patients were enrolled and treated, among whom 44 (62.0%) had AML evolving from MDS and 27 (38.0%) had RAEB-2. Twenty-eight (63.6%) AML patients achieved complete remission (CR) or complete remission with incomplete blood count recovery (CRi): 14 (31.8%) patients had CR and 14 (31.8%) had CRi. Six (22.2%) MDS patients had CR and 15 (55.6%) had marrow complete remission. The median overall survival (OS) was 22.4 months for the entire group, with a median OS of 24.2 months for AML and 20.0 months for MDS subgroup. No early death occurred. In conclusion, the D-IA regimen was effective and well tolerated, representing an alternative option for patients with AML evolving from MDS or MDS subtype RAEB-2.

Download full-text PDF

Source
http://dx.doi.org/10.1002/hon.2755DOI Listing

Publication Analysis

Top Keywords

aml evolving
20
evolving mds
16
d-ia regimen
12
complete remission
12
mds
10
decitabine low
8
low dose
8
dose idarubicin
8
idarubicin cytarabine
8
acute myeloid
8

Similar Publications

Exploring treatment-driven subclonal evolution of prognostic triple biomarkers: Dual gene fusions and chimeric RNA variants in novel subtypes of acute myeloid leukemia patients with KMT2A rearrangement.

Drug Resist Updat

January 2025

Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:

Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.

View Article and Find Full Text PDF

T-cell receptor (TCR) therapies are a promising modality for the treatment of cancers, with significant efforts being directed towards acute myeloid leukaemia (AML), a particularly challenging disease. Chimeric antigen receptor (CAR) T-cells targeting single surface antigens have shown remarkable efficacy for B-cell lymphoblastic leukaemia, lymphomas and multiple myeloma. However, AML presents formidable obstacles to the effectiveness of CAR T-cells due to the widespread expression of heterogenous leukaemia immunophenotypes and surface antigen targets additionally present on normal myeloid cells.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem-cell transplantation (HCT) is one of the principal curative approaches in the treatment of acute myeloid leukemia (AML); however, relapse post-transplantation remains a catastrophic event with poor prognosis. The incidence of relapse has remained unchanged over the last three decades despite an evolving understanding of the immunobiology of the graft-versus leukemia effect and the immune escape mechanisms that lead to post-HCT relapse. The approach to post-transplant relapse is highly individualized and is dictated both by disease biology and genomics as well as the patient's clinical status at the time of relapse and the interval between relapse and transplantation.

View Article and Find Full Text PDF

Context.—: Blasts in myelodysplastic syndromes (MDSs) typically have a primitive myeloid immunophenotype (CD34+CD117+CD13+CD33+HLA-DR+). On rare occasions, blasts were found to be CD34 negative or minimally expressed in a presumptive MDS.

View Article and Find Full Text PDF

Next-generation sequencing RNA fusion panel for the diagnosis of haematological malignancies.

Pathology

November 2024

Department of Haematology, Monash Health, Clayton, Vic, Australia; Department of Diagnostic Genomics, Monash Health, Clayton, Vic, Australia; School of Clinical Sciences, Monash University, Clayton, Vic, Australia. Electronic address:

Haematological malignancies are being increasingly defined by gene rearrangements, which have traditionally been detected by karyotype, fluorescent in situ hybridisation (FISH) or reverse-transcriptase polymerase chain reaction (RT-PCR). However, these traditional methods may miss cryptic gene rearrangements and are limited by the number of gene rearrangements screened at any one time. A next-generation sequencing (NGS) RNA fusion panel is an evolving technology that can identify multiple fusion transcripts in a single molecular assay, even without prior knowledge of breakpoints or fusion partners.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!