Cell-type-independent expression of inwardly rectifying potassium currents in mouse fungiform taste bud cells.

Physiol Res

Department of Human Intelligence Systems, Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, Kitakyushu, Japan.

Published: July 2020

Inwardly rectifying potassium (Kir) channels play key roles in functions, including maintaining the resting membrane potential and regulating the action potential duration in excitable cells. Using in situ whole-cell recordings, we investigated Kir currents in mouse fungiform taste bud cells (TBCs) and immunologically identified the cell types (type I-III) expressing these currents. We demonstrated that Kir currents occur in a cell-type-independent manner. The activation potentials we measured were -80 to -90 mV, and the magnitude of the currents increased as the membrane potentials decreased, irrespective of the cell types. The maximum current densities at -120 mV showed no significant differences among cell types (p>0.05, one-way ANOVA). The density of Kir currents was not correlated with the density of either transient inward currents or outwardly rectifying currents, although there was significant correlation between transient inward and outwardly rectifying current densities (p<0.05, test for no correlation). RT-PCR studies employing total RNA extracted from peeled lingual epithelia detected mRNAs for Kir1, Kir2, Kir4, Kir6, and Kir7 families. These findings indicate that TBCs express several types of Kir channels functionally, which may contribute to regulation of the resting membrane potential and signal transduction of taste.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648319PMC
http://dx.doi.org/10.33549/physiolres.934331DOI Listing

Publication Analysis

Top Keywords

kir currents
12
cell types
12
inwardly rectifying
8
rectifying potassium
8
currents
8
currents mouse
8
mouse fungiform
8
fungiform taste
8
taste bud
8
bud cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!