Despite the widespread use of naphthamide atropisomers in biologically active compounds and asymmetric catalysis, few catalytic methods have succeeded in the enantioselective synthesis of these compounds. Herein, a chiral Brønsted acid (CBA) catalysis strategy was developed for readily scalable dynamic kinetic resolution of challenging ortho-formyl naphthamides with pyrrolylanilines. The chiral axis of the atropisomeric amide and a stereogenic center were simultaneously established for a new family of potential biologically active pyrrolopyrazine compounds with high enantio- and diastereoselectivities (up to >20 : 1 d.r. and 98 : 2 e.r.). Epimerization experiments of its derivatives reveal that the N-substitution of the nearby stereogenic center could affect the configurational stability of the axially chiral aromatic amides. These results might be useful for the construction of other kinds of novel axially chiral molecules with a low rotational barrier.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0cc02380a | DOI Listing |
Appl Microbiol Biotechnol
December 2024
Department of Life Science and Technology: Tokyo Kogyo Daigaku Seimei Rikogakuin Seimei Rikogakukei, Institute of Science Tokyo, 4259 Nagatsuta-Cho Midzeori-Ku, Yokohama, 226-8501, Japan.
Chiral diaryl alcohols, such as (4-chlorophenyl)(pyridin-2-yl)methanol, are important intermediates for pharmaceutical synthesis. However, using alcohol dehydrogenases (ADHs) in the asymmetric reduction of diaryl ketones to produce the corresponding alcohols is challenging due to steric hindrance in the substrate binding pockets of the enzymes. In this study, the steric hindrance of the ADH from Geotrichum candidum NBRC 4597 (G.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
Chiral molecules are ubiquitous in nature and biological systems, where the unique optical and physical properties of chiral nanoparticles are closely linked to their shapes. Synthesizing chiral plasmonic nanomaterials with precise structures and tunable sizes is essential for exploring their applications. This study presents a method for growing three-dimensional chiral gold nanoflowers (Au NFs) derived from trisoctahedral (TOH) nanocrystals using D-cysteine and L-cysteine as chiral inducers.
View Article and Find Full Text PDFMar Drugs
November 2024
College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University, Incheon 21983, Republic of Korea.
Four previously undescribed pentacyclic triterpenoid saponins, pannosides F-I (-), were isolated from the halophyte L. (), and their chemical structures were elucidated using 1D and 2D NMR spectroscopy and mass spectrometry. Comprehensive structural analysis revealed the presence of distinct aglycone and glycosidic moieties, along with complex acylation patterns.
View Article and Find Full Text PDFBiosensors (Basel)
December 2024
School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea.
Metal nanoclusters (NCs) are promising alternatives to organic dyes and quantum dots. These NCs exhibit unique physical and chemical properties, such as fluorescence, chirality, magnetism and catalysis, which contribute to significant advancements in biosensing, biomedical diagnostics and therapy. Through adjustments in composition, size, chemical environments and surface ligands, it is possible to create NCs with tunable optoelectronic and catalytic activity.
View Article and Find Full Text PDFJ Org Chem
December 2024
Chemistry and Materials Program, College of Engineering, Shibaura Institute of Technology, 3-7-5 Toyosu, Kohto-ku, Tokyo 135-8548, Japan.
Both enantiomers of 2-ethylquinazolin-4-ones bearing -CHO/CDO and CHO/CHO phenyl groups at the N3 position were prepared. These are isotopic atropisomeric compounds based on a remote and conformationally flexible H/D and C/C discrimination, and it was found that a CHCl solution of -CHO/CDO derivative shows a slight specific optical rotation. Furthermore, diastereomeric quinazolinone derivatives bearing a chiral carbon were prepared, and their stereochemical purities and rotational stability as well as the isotopic atropisomerism were verified by H NMR and chiral high-performance liquid chromatography (HPLC) analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!