Nowadays, the spectroscopic databases used for the modeling of Earth and planetary atmospheres provide only electric-dipole transitions for polyatomic molecules (H2O, CO2, N2O, CH4, O3…). Very recently, electric-quadrupole transitions have been detected in the high sensitivity cavity ring down spectrum (CRDS) of water vapour near 1.3 μm [A. Campargue et al., Phys. Rev. Res., 2020, 2, 023091, DOI: 10.1103/PhysRevResearch.2.023091]. This discovery paved the way to systematic searches of quadrupole transitions in water vapor and other polyatomic molecules. In the present work, on the basis of high accuracy ab initio predictions, H216O quadrupole lines are detected for the first time in the 5.4 μm and 2.5 μm regions where they are predicted to have their largest intensities (up to 10-26 cm per molecule). A total of twelve quadrupole lines are identified in two high sensitivity Fourier transform spectra recorded with a 1064 m path length. Ten lines in the 4030-4150 cm-1 region are assigned to the ν3 band while the lines near 1820 and 1926 cm-1 belong to the ν2 band. The derived line intensities which are largely above the dipole intensity cut-off of the standard spectroscopic databases, agree nicely with the theoretical predictions. We thus conclude that the calculated line list of quadrupole transitions, validated by the present measurements, should be incorporated in the spectroscopic databases.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp01667eDOI Listing

Publication Analysis

Top Keywords

spectroscopic databases
12
electric-quadrupole transitions
8
transitions water
8
water vapour
8
vapour μm
8
polyatomic molecules
8
high sensitivity
8
quadrupole transitions
8
quadrupole lines
8
transitions
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!