Metallic Li deposited on the anode is known to induce short circuiting and degradation of the charge capacity of Li-ion batteries. However, no reliable technique is currently available to observe such Li metal without removing the case of the battery. An elemental analysis using muonic X-rays is proposed here because of its unique properties of nondestructive measurement, high sensitivity to light elements, and depth resolution. We demonstrated that this technique can be applied to detection of Li deposited on the surface of an anode containing Li ions, using a fully charged anode with Li deposited due to overcharge in an Al-laminated plastic pouch. The basis for the detection method is the difference in the atomic Coulomb capture ratio of the negative muons between the Li metal and ions. We have found, as a result, that the intensity of the muonic X-rays from metallic Li was approximately 50 times higher than that from Li ions. Consequently, the Li metal on the anode was clearly distinguishable from the intercalated Li ions in the anode. Furthermore, measurements of two overcharged anodes with 1.3 and 2.7 mg of metallic Li deposition, respectively, indicated that this technique is suitable for quantitative analysis. Distribution analysis is also possible, as shown by a preliminary observation on an overcharged anode from the back side. Therefore, this technique offers a new approach to the analysis of Li deposited on the anode of a Li-ion pouch battery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.analchem.0c00370DOI Listing

Publication Analysis

Top Keywords

muonic x-rays
12
anode
8
x-rays metallic
8
deposited anode
8
deposited
5
nondestructive high-sensitivity
4
high-sensitivity detections
4
metallic
4
detections metallic
4
metallic lithium
4

Similar Publications

Overcoming the probing-depth dilemma in spectroscopic analyses of batteries with muon-induced X-ray emission (MIXE).

J Mater Chem A Mater

January 2025

Empa, Swiss Federal Laboratories for Materials Science and Technology Dübendorf 8600 Switzerland

Battery research often encounters the challenge of determining chemical information, such as composition and elemental oxidation states, of a layer buried within a cell stack in a non-destructive manner. Spectroscopic techniques based on X-ray emission or absorption are well-suited and commonly employed to reveal this information. However, the attenuation of X-rays as they travel through matter creates a challenge when trying to analyze layers buried at depths exceeding hundred micrometers from the sample's surface.

View Article and Find Full Text PDF

GermanIum array for non-destructive testing (GIANT) setup for muon-induced x-ray emission (MIXE) at the Paul Scherrer Institute.

Rev Sci Instrum

April 2023

Laboratory of Muon Spin Spectroscopy, Neutron and Muon Division, Paul Scherrer Institute, Forschungsstrasse 111, 5232 PSI-Villigen, Switzerland.

The usage of muonic x-rays to study elemental properties like nuclear radii ranges back to the seventies. This triggered the pioneering work at the Paul Scherrer Institute (PSI), during the eighties on the Muon-induced x-ray emission (MIXE) technique for a non-destructive assessment of elemental compositions. In recent years, this method has seen a rebirth, improvement, and adoption at most muon facilities around the world.

View Article and Find Full Text PDF

Muonic atom spectroscopy-the measurement of the x rays emitted during the formation process of a muonic atom-has a long standing history in probing the shape and size of nuclei. In fact, almost all stable elements have been subject to muonic atom spectroscopy measurements and the absolute charge radii extracted from these measurements typically offer the highest accuracy available. However, so far only targets of at least a few hundred milligram could be used as it required to stop a muon beam directly in the target to form the muonic atom.

View Article and Find Full Text PDF

Muon catalyzed fusion ([Formula: see text]CF) in which an elementary particle, muon, facilitates the nuclear fusion between the hydrogen isotopes has been investigated in a long history. In contrast to the rich theoretical and experimental information on the [Formula: see text]CF in cold targets, there is relatively scarce information on the high temperature gas targets of deuterium-tritium mixture with high-thermal efficiency. We demonstrate new kinetics model of [Formula: see text]CF including three roles of resonant muonic molecules, (i) changing isotopic population, (ii) producing epi-thermal muonic atoms, and (iii) inducing fusion in-flight.

View Article and Find Full Text PDF

Non-destructive 3D imaging method using muonic X-rays and a CdTe double-sided strip detector.

Sci Rep

March 2022

Radioisotope Research Center, Institute for Radiation Sciences, Osaka University, 1-1, Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.

Elemental analysis based on muonic X-rays resulting from muon irradiation provides information about bulk material composition without causing damage, which is essential in the case of precious or otherwise unreachable samples, such as in archeology and planetary science. We developed a three-dimensional (3D) elemental analysis technique by combining the elemental analysis method based on negative muons with an imaging cadmium telluride double-sided strip detector (CdTe-DSD) designed for the hard X-ray and soft [Formula: see text]-ray observation. A muon irradiation experiment using spherical plastic samples was conducted at the Japan Proton Accelerator Research Complex (J-PARC); a set of projection images was taken by the CdTe-DSD, equipped with a pinhole collimator, for different sample rotation angles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!