Many organisms synthesize secondary metabolites against natural enemies. However, to which environmental factors the production of these metabolites is adjusted to is poorly investigated in animals, especially so in vertebrates. Bufadienolides are steroidal compounds that are present in a wide range of plants and animals and, if present in large quantities, can provide protection against natural enemies, such as pathogens. In a correlative study involving 16 natural populations we investigated how variation in bufadienolide content of larval common toads (Bufo bufo) is associated with the bacterial community structure of their aquatic environment. We also evaluated pond size, macrovegetation cover, and the abundance of predators, conspecifics and other larval amphibians. We measured toxin content of tadpoles using HPLC-MS and determined the number of bufadienolide compounds (NBC) and the total quantity of bufadienolides (TBQ). AICc-based model selection revealed strong relationships of NBC and TBQ with bacterial community structure of the aquatic habitat as well as with the presence of conspecific tadpoles. The observed relationships may have arisen due to adaptation to local bacterial communities, phenotypic plasticity, differential biotransformation of toxin compounds by different bacterial communities, or a combination of these processes. Bacterial groups that contribute to among-population variation in toxin content remain to be pinpointed, but our study suggesting that toxin production may be influenced by the bacterial community of the environment represents an important step towards understanding the ecological and evolutionary processes leading to microbiota-mediated variation in skin toxin profiles of aquatic vertebrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7332479PMC
http://dx.doi.org/10.1007/s10886-020-01184-4DOI Listing

Publication Analysis

Top Keywords

bacterial community
16
community structure
12
bufo bufo
8
aquatic habitat
8
natural enemies
8
structure aquatic
8
toxin content
8
bacterial communities
8
bacterial
7
toxin
5

Similar Publications

The Ironwood tree () holds a significant ecological role in Guam where a decline in Ironwood trees was first documented in 2002. Studies have linked the Ironwood tree decline (IWTD) to bacteria from the complex and wetwood bacteria, specifically and . Presence of termites was first found to be associated with IWTD in 2010; however, the role of termites in IWTD is still not clear.

View Article and Find Full Text PDF

Evidence suggests that the gut microbiome may play a role in multiple sclerosis (MS). However, the majority of the studies have focused on gut bacterial communities; none have examined the fungal microbiota (mycobiota) in persons with pediatric-onset multiple sclerosis (POMS). We examined the gut mycobiota in persons with and without POMS through a cross-sectional examination of the gut mycobiota from 46 participants' stool samples (three groups: 18 POMS, 13 acquired monophasic demyelinating syndromes [monoADS], and 15 unaffected controls).

View Article and Find Full Text PDF

Introduction: The primary objective of our investigation was to assess the repercussions of prolonged exposure to heavy metals and smoking on the microbiome of the oral buccal mucosa. Concurrently, we aimed to elucidate the intricate interplay between external environmental exposures and the composition of the oral microbial ecosystem, thereby discerning its potential implications for human health.

Methods: Our study cohort was stratified into four distinct groups: MS (characterized by concurrent exposure to heavy metals and smoking), M (exposed solely to heavy metals), S (exposed solely to smoking), and C (comprising individuals serving as a control group).

View Article and Find Full Text PDF

The aim of this study was to investigate the biomarkers of salivary and fecal microbiota in Colorectal cancer (CRC). Initially, the study scrutinized the microbial community composition disparities among groups. Utilizing Lasso analysis, it sifted through operational taxonomic units (OTUs) to pinpoint distinctive features.

View Article and Find Full Text PDF

The Effects of Electronic Cigarettes on Oral Microbiome and Metabolome in 3D Tissue-Engineered Models.

Int Dent J

December 2024

Department of Restorative Dentistry, Hamdan Bin Mohammed College of Dental Medicine (HBMCDM), Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai Health, Dubai, United Arab Emirates; Department of Restorative Dentistry, School of Clinical Dentistry, University of Sheffield, Sheffield, UK. Electronic address:

Background And Aim: Recent studies have shown that electronic cigarettes (ECs) use disrupts the oral microbiome composition and diversity, impairing the metabolic pathways of the mucosal cells. However, to date, no reports have evaluated the role of EC exposure in the context of oral metabolome. Hence, the aim of this study was to investigate the role of EC aerosol exposure in the dysregulation of the oral microbiome and metabolome profile using in vitro 3D organotypic models of human oral mucosa.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!