A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

miR‑1299/NOTCH3/TUG1 feedback loop contributes to the malignant proliferation of ovarian cancer. | LitMetric

miR‑1299/NOTCH3/TUG1 feedback loop contributes to the malignant proliferation of ovarian cancer.

Oncol Rep

State Key Laboratory of Molecular Oncology, Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.

Published: August 2020

Recent studies have revealed the oncogenic role of notch reporter 3 (NOTCH3) in ovarian cancer (OC). However, the possible regulators and mechanisms underlying notch receptor 3 (NOTCH3)‑mediated behaviors in OC remain to be completely investigated. In the present study, we aimed to identify regulators of NOTCH3 and their interactions underlying the pathogenesis of OC. Bioinformatics analysis and luciferase reporter assay were used to identify potential regulatory miRNAs and lncRNAs of NOTCH3 in OC. Several in vivo and in vitro assays were performed to evaluate their effects on the proliferative ability mediated by NOTCH3. We identified microRNA‑1299 (miR‑1299) as a novel negative regulator of NOTCH3. miR‑1299 was downregulated in OC and was found to be considerably correlated with tumor differentiation. Upregulation of miR‑1299 inhibited cell proliferation, colony formation, and 5‑ethynyl‑2'‑deoxyuridine (EdU) incorporation, as well as induced cell cycle arrest in the G0G1 phase in OC cells. Overexpression of miR‑1299 in xenograft mouse models suppressed tumor growth in vivo. The lncRNA taurine upregulated gene 1 (TUG1), acting as a sponge of miR‑1299, was found to upregulate NOTCH3 expression and promote cell proliferation in OC through the competing endogenous RNA mechanism. In addition, TUG1 was found to be a potential downstream target of NOTCH3, forming a miR‑1299/NOTCH3/TUG1 feedback loop in the development of OC. Collectively, our findings improve the understanding of NOTCH3‑mediated regulation in OC pathogenesis and facilitate the development of miRNA‑ and lncRNA‑directed diagnostics and therapeutics against this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7336509PMC
http://dx.doi.org/10.3892/or.2020.7623DOI Listing

Publication Analysis

Top Keywords

mir‑1299/notch3/tug1 feedback
8
feedback loop
8
ovarian cancer
8
cell proliferation
8
notch3
7
mir‑1299
5
loop contributes
4
contributes malignant
4
malignant proliferation
4
proliferation ovarian
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!