While dendritic cell (DC)‑based immunotherapy has achieved satisfactory results in animal models, its effects were not satisfactory as initially expected in clinical applications, despite the safety and varying degrees of effectiveness in various types of cancer. Improving the efficacy of the DC‑based vaccine is essential for cancer immunotherapy. The present study aimed to investigate methods with which to amplify and enhance the antitumor immune response of a DC‑based tumor vaccine by silencing the expression of indoleamine 2,3‑dioxygenase 2 (IDO2), a tryptophan rate‑limiting metabolic enzyme in DCs. In vitro experiments revealed that the silencing of IDO2 in DCs did not affect the differentiation of DCs, whereas it increased their expression of costimulatory molecules following stimulation with tumor necrosis factor (TNF)‑α and tumor lysate from Lewis lung cancer (LLC) cells. In a mixed co‑culture system, the IDO2‑silenced DCs promoted the proliferation of T‑cells and reduced the induction of regulatory T‑cells (Tregs). Further in vivo experiments revealed that the silencing of IDO2 in DCs markedly suppressed the growth of tumor cells. Moreover, treatment with the IDO2‑silenced DC‑based cancer vaccine enhanced cytotoxic T lymphocyte activity, whereas it decreased T‑cell apoptosis and the percentage of CD4+CD25+Foxp3+ Tregs. On the whole, the present study provides evidence that the silencing of the tryptophan rate‑limiting metabolic enzyme, IDO2, has the potential to enhance the efficacy of DC‑based cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/ijo.2020.5073 | DOI Listing |
Int J Oncol
August 2020
Institute of Immunotherapy, Nanchang University and Jiangxi Academy of Medical Science, Nanchang, Jiangxi 330098, P.R. China.
While dendritic cell (DC)‑based immunotherapy has achieved satisfactory results in animal models, its effects were not satisfactory as initially expected in clinical applications, despite the safety and varying degrees of effectiveness in various types of cancer. Improving the efficacy of the DC‑based vaccine is essential for cancer immunotherapy. The present study aimed to investigate methods with which to amplify and enhance the antitumor immune response of a DC‑based tumor vaccine by silencing the expression of indoleamine 2,3‑dioxygenase 2 (IDO2), a tryptophan rate‑limiting metabolic enzyme in DCs.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
December 2017
Jiangxi Academy of Medical Sciences, Nanchang 330006; Institute of Immunology and Biological Therapy, Nanchang University, Nanchang 330006, China. *Corresponding author, E-mail:
Objective To study the role of indoleamine 2, 3-dioxygenase 2 (IDO2) in anti-tumor therapy and its effect on the immune response when using IDO2 as therapeutic target. Methods B16-BL6 cells were used to construct mouse xenografted melanoma model. IDO2-shRNA that contained IDO2-siRNA or control shRNA (scrambled-shRNA) was injected hydrodynamically via the tail vein to treat melanoma.
View Article and Find Full Text PDFOncotarget
May 2016
Institute of Immunotherapy of Nanchang University, and Jiangxi Academy of Medical Sciences, Nanchang, China.
Indoleamine 2,3-dioxygenase 2 (IDO2) is a newly discovered enzyme that catalyzes the initial and rate-limiting step in the degradation of tryptophan. As a homologous protein of IDO1, IDO2 plays an inhibitory role in T cell proliferation, and it is essential for regulatory T cell (Treg) generation in healthy conditions. Little is known about the immune-independent functions of IDO2 relevant to its specific contributions to physiology and pathophysiology in cancer cells.
View Article and Find Full Text PDFClin Cancer Res
January 2009
Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan, R.O.C.
Purpose: Indoleamine 2,3-dioxygenase (IDO), an enzyme that degrades tryptophan, is a negative immune regulatory molecule of dendritic cells. IDO-expressing dendritic cells suppress T cell responses and may be immunosuppressive in vivo. We hypothesized that silencing the IDO expression in skin dendritic cells in vivo could elicit antitumor activity in tumor-draining lymph nodes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!