Background: Sea vegetables are rich sources of nutrients as well as bioactive components that are linked to metabolic health improvement. Algal polysaccharides improve satiety and modulate gut microbiota while proteins, peptides, and phenolic fractions exert anti-inflammatory, antioxidant, and antidiabetic effects.

Objective: We tested the hypothesis that dietary supplementation with either Pacific dulse (, red algae) or wakame (, brown algae) could remediate metabolic complications in high-fat diet-induced obesity.

Methods: Individually caged C57BL/6J mice ( = 8) were fed ad libitum with either a low-fat diet (LFD), 10% kcal fat; high-fat diet (HFD), 60% kcal fat; HFD + 5% (wt:wt) dulse (HFD + D); or HFD + 5% (wt:wt) wakame (HFD + W) for 8 weeks. Food intake and weight gain were monitored weekly. Glucose tolerance, hepatic lipids, fecal lipids, and plasma markers were evaluated, and the gut microbiome composition was assessed.

Results: Despite the tendency of higher food and caloric intake than the HFD ( = 0.04) group, the HFD + D group mice did not exhibit higher body weight, indicating lower food and caloric efficiency (< 0.001). Sea vegetable supplementation reduced plasma monocyte chemotactic protein (MCP-1) (< 0.001) and increased fecal lipid excretion (< 0.001). Gut microbiome analysis showed that the HFD + D group had higher alpha-diversity than the HFD or LFD group, whereas beta-diversity analyses indicated that sea vegetable-supplemented HFD-fed mice (HFD + D and HFD + W groups) developed microbiome compositions more similar to those of the LFD-fed mice than those of the HFD-fed mice.

Conclusion: Sea vegetable supplementation showed protective effects against obesity-associated metabolic complications in C57BL/6J male mice by increasing lipid excretion, reducing systemic inflammatory marker, and mitigating gut microbiome alteration. While the obese phenotype development was not prevented, metabolic issues related to lipid absorption, inflammation, and gut microbial balance were improved, showing therapeutic promise and warranting eventual mechanistic elucidations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7245532PMC
http://dx.doi.org/10.1093/cdn/nzaa072DOI Listing

Publication Analysis

Top Keywords

sea vegetables
8
hfd + 5% wtwt
8
food caloric
8
supplementation sea
4
vegetables exerts
4
exerts metabolic
4
metabolic benefits
4
benefits diet-induced
4
diet-induced obesity
4
obesity mice
4

Similar Publications

Invasion History and Dispersion Dynamics of the Mediterranean Fruit Fly in the Balkan Peninsula.

Insects

December 2024

Laboratory of Entomology and Agricultural Zoology, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou St., 38446 Volos, Greece.

The Mediterranean fruit fly (medfly), (Wiedemann 1824; Diptera, Tephritidae), is considered one of the most important pests, infesting more than 300 species of fresh fruit and vegetables worldwide. The medfly is an important invasive species, which has spread from the eastern part of sub-Saharan Africa to all of the world's continents in recent centuries. Currently, the medfly is expanding its geographical range to cooler, temperate areas of the world, including northern areas of Mediterranean countries and continental areas of Central Europe.

View Article and Find Full Text PDF

Fruit flies (Diptera: Tephritidae) are significant pests of fruit and vegetable crops worldwide. Despite their importance, some regions in South America remain under-researched regarding the fruit fly species that damage host plants and the parasitoids that provide their natural control. In this study, we investigated the interactions among host plants, fruit flies, and their larval parasitoids along two altitudinal gradients in Oxapampa, Pasco, a tropical Andean forest in Peru.

View Article and Find Full Text PDF

Sea buckthorn polyphenols on gastrointestinal health and the interactions with gut microbiota.

Food Chem

December 2024

Key Laboratory of Characteristics Agricultural Product Processing and Quality Control (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Key Laboratory for Food Nutrition and Safety Control of Xinjiang Production and Construction Corps, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China; Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science and Technology, Shihezi University, Shihezi, Xinjiang, 832000, China. Electronic address:

The potential health benefits of sea buckthorn polyphenols (SBP) have been extensively studied, attracting increasing attention from researchers. This paper reviews the composition of SBP, the effects of processing on SBP, its interactions with nutrients, and its protective role in the gastrointestinal tract. Polyphenols influence nutrient absorption and metabolism by regulating the intestinal flora, thereby enhancing bioavailability, protecting the gastrointestinal tract, and altering nutrient structures.

View Article and Find Full Text PDF

Characterization of Physicochemical Properties, Bioactivities, and Sensory Attributes of Sea Buckthorn-Fava Bean Composite Instant Powder: Spray-Drying Versus Freeze-Drying Coupled with Carriers.

Foods

December 2024

Engineering Research Center of Storage and Processing of Xinjiang Characteristic Fruits and Vegetables, Ministry of Education, School of Food Science, Shihezi University, Shihezi 832000, China.

Foods and beverages with health benefits have become increasingly popular with consumers, and fruits and legumes are considered good sources of nutrients. In this study, sea buckthorn and fava bean were used as the main raw materials to prepare sea buckthorn-fava bean composite instant powder (S-FCP). Different drying methods (spray-drying (SD) and freeze-drying (FD)) combined with carriers (maltodextrin (MD) and inulin (INU)) were involved to investigate their effects on physicochemical properties, functional properties, and sensory attributes of instant powder.

View Article and Find Full Text PDF

Hermetia illucens larvae oil as an alternative lipid source: Effects on immune function, antioxidant activity, and inflammatory response in gilthead seabream juveniles.

Comp Biochem Physiol B Biochem Mol Biol

December 2024

Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, Ed. FC4, 4169-007 Porto, Portugal.

Hermetia illucens larvae oil (HIO) is a promising new ingredient that can potentially be an alternative lipid source in aquafeeds. To assess its viability in gilthead seabream juvenile diets, a 10-week feeding trial was performed, and the effects on antioxidant, immune, and inflammatory responses were evaluated. Four diets were formulated to include HIO at increasing levels: 0, 4, 7.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!