Antimicrobial resistance (AMR) is a growing public health challenge that is expected to disproportionately burden lower- and middle-income countries (LMICs) in the coming decades. Although the contributions of human and veterinary antibiotic misuse to this crisis are well-recognized, environmental transmission (via water, soil or food contaminated with human and animal faeces) has been given less attention as a global driver of AMR, especially in urban informal settlements in LMICs-commonly known as 'shanty towns' or 'slums'. These settlements may be unique hotspots for environmental AMR transmission given: (1) the high density of humans, livestock and vermin living in close proximity; (2) frequent antibiotic misuse; and (3) insufficient drinking water, drainage and sanitation infrastructure. Here, we highlight the need for strategies to disrupt environmental AMR transmission in urban informal settlements. We propose that water and waste infrastructure improvements tailored to these settings should be evaluated for their effectiveness in limiting environmental AMR dissemination, lowering the community-level burden of antimicrobial-resistant infections and preventing antibiotic misuse. We also suggest that additional research is directed towards developing economic and legal incentives for evaluating and implementing water and waste infrastructure in these settings. Given that almost 90% of urban population growth will occur in regions predicted to be most burdened by the AMR crisis, there is an urgent need to build effective, evidence-based policies that could influence massive investments in the built urban environment in LMICs over the next few decades.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41564-020-0722-0 | DOI Listing |
Sci Rep
December 2024
Department of Radiology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, USA.
This study investigated the incidence of new-onset cardiovascular disorders up to 3.5 years post SARS-CoV-2 infection for 56,400 individuals with COVID-19 and 1,093,904 contemporary controls without COVID-19 in the Montefiore Health System (03/11/2020 to 07/01/2023). Outcomes were new incidence of major adverse cardiovascular event (MACE), arrhythmias, inflammatory heart disease, thrombosis, cerebrovascular disorders, ischemic heart disease and other cardiac disorders between 30 days and (up to) 3.
View Article and Find Full Text PDFSci Rep
December 2024
School of Management Science and Engineering, Shandong Jianzhu University, Jinan, 250101, China.
This study seeks to improve urban supply chain management and collaborative governance in the context of public health emergencies (PHEs) by integrating fuzzy theory with the Back Propagation Neural Network (BPNN) algorithm. By combining these two approaches, an early warning mechanism for supply chain risks during PHEs is developed. The study employs Matlab software to simulate supply chain risks, incorporating fuzzy inference techniques with the adaptive data modeling capabilities of neural networks for both training and testing.
View Article and Find Full Text PDFSci Rep
December 2024
School of Resource and Environmental Sciences, Wuhan University, 129 Luoyu Road, Wuhan, 430079, Hubei Province, China.
Building resilient cities has become an emerging risk management strategy, thus it is necessary to make a scientific evaluation on urban resilience. In this study, both the Driving Force-Pressure-State-Impact-Response (DPSIR) framework and the BP neural network are innovatively adopted to construct a comprehensive urban resilience evaluation system. Prefecture-level cities in Hubei Province are examined for empirical analysis.
View Article and Find Full Text PDFBioresour Technol
December 2024
Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China; Engineering Research Centre of Chemical Pollution Control, Ministry of Education, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu, 210094, China. Electronic address:
Anammox coupled partial S-driven autotrophic denitrification (PSAD) technology represents an innovative approach for removing nitrogen from wastewater. The research highlighted the crucial role of biofilm on sulfur particles in the nitrogen removal process. Further analysis revealed that sulfur-oxidizing bacteria (SOB) are primarily distributed in the inner layer of the biofilm, while anammox bacteria (AnAOB) are relatively evenly distributed in inner and outer layers, with Thiobacillus and Candidatus Brocadia being the dominant species, respectively.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Center for Chinese Urbanization Studies, Collaborative Innovation Center for New Urbanization and Social Governance, Soochow University, 199 Renai Road, Suzhou, 215006, PR China. Electronic address:
In this study, we investigate the impacts of three institutional pressures on corporate greenwashing strategies, with a special focus on the regulative, normative, and cognitive pressures stemming respectively from governmental supervision, media coverage, and ESG rating divergence. We further examine the moderating effects that campaign-style environmental enforcement has on these impacts - specifically, the effects of the top-down intervention facilitated by the central environmental protection inspection mechanism. Our empirical analyses provide robust evidence to substantiate the constraining effects of various institutional pressures on greenwashing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!