Neuronal apoptosis caused by amyloid-beta (Aβ) overproduction is one of the most important pathological features in Alzheimer's disease (AD). Endoplasmic reticulum (ER) stress induced by Aβ overload plays a critical role in this process. Bis(ethylmaltolato)oxidovanadium (IV) (BEOV), a vanadium compound which had been regarded as peroxisome proliferator-activated receptor γ (PPARγ) agonist, was reported to exert an antagonistic effect on ER stress. In this study, we tested whether BEOV could ameliorate the Aβ-induced neuronal apoptosis by inhibiting ER stress. It was observed that BEOV treatment ameliorated both tunicamycin-induced and/or Aβ-induced ER stress and neurotoxicity in a dose-dependent manner through downgrading ER stress-associated and apoptosis-associated proteins in primary hippocampal neurons. Consistent with in vitro results, BEOV also reduced ER stress and inhibited neuronal apoptosis in hippocampi and cortexes of transgenic AD model mice. Moreover, by adopting GW9662 and salubrinal, the inhibitor of PPARγ and hyperphosphorylated eukaryotic translation initiation factor 2α, respectively, we further confirmed that BEOV alleviated Aβ-induced ER stress and neuronal apoptosis in primary hippocampal neurons by activating PPARγ. Taken together, these results provided scientific evidences to support the concept that BEOV ameliorates Aβ-induced ER stress and neuronal apoptosis through activating PPARγ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2020.111073 | DOI Listing |
Neurotherapeutics
January 2025
Department of Neurology, Washington University School of Medicine in St Louis, MO, USA; St Louis VA Medical Center, St Louis, MO, USA. Electronic address:
Cellular senescence is a cell state triggered by programmed physiological processes or cellular stress responses. Stress-induced senescent cells often acquire pathogenic traits, including a toxic secretome and resistance to apoptosis. When pathogenic senescent cells form faster than they are cleared by the immune system, they accumulate in tissues throughout the body and contribute to age-related diseases, including neurodegeneration.
View Article and Find Full Text PDFPhytomedicine
December 2024
Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, China; Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China; Institute of Clinical Neurology, Fujian Medical University, Fuzhou, China. Electronic address:
Background: Perilladehyde, an extract of perillae in the Labiatae family, can produce significant anti-inflammatory and antioxidant effects. Although literature evidences the favorable effect of perillaldehyde on ischemic stroke, the exact mechanism remains blurred.
Purpose: This study attempted to explore the impact of perillaldehyde on cerebral ischemia-reperfusion injury and the related action mechanism.
CNS Neurosci Ther
January 2025
Department of Neurology, School of Medicine, Guangzhou First People's Hospital, South China University of Technology, Guangzhou, China.
Objective: This study aims to investigate how the E3 ubiquitin ligase LITAF influences mitochondrial autophagy by modulating MCL-1 ubiquitination, and its role in the development of epilepsy.
Methods: Employing single-cell RNA sequencing (scRNA-seq) to analyze brain tissue from epilepsy patients, along with high-throughput transcriptomics, we identified changes in gene expression. This was complemented by in vivo and in vitro experiments, including protein-protein interaction (PPI) network analysis, western blotting, and behavioral assessments in mouse models.
Background: Atypical teratoid rhabdoid tumor (ATRT) is the most common malignant brain tumor in infants, and more than 60% of children with ATRT die from their tumor. ATRT is associated with mutational inactivation/deletion of , a member of the SWI/SNF chromatin remodeling complex, suggesting that epigenetic events play a critical role in tumor development and progression. Moreover, disruption of SWI/SNF allows unopposed activity of epigenetic repressors, which contribute to tumorigenicity.
View Article and Find Full Text PDFActa Neurol Belg
January 2025
Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
Insulin resistance is a condition characterized by the attenuated biological response in the presence of normal or elevated insulin level and therefore is characterized by the impaired sensitivity to insulin and impaired glucose disposal and utilization. Insulin resistance in brain/Brain insulin resistance (BIR) is accompanied by the various manifestations including alteration in glucose sensing by hypothalamic neurons, impaired sympathetic outflow in response to hypoglycemia, increased ROS production, impaired mitochondrial oxygen consumption in the brain, cognitive deficits and neuronal cell damage. It has been reported that the disrupted insulin signaling is accompanied by the reduced expression of insulin receptor (IR)/insulin receptor substrate 1 (IRS1)/PI3K/AKT and IGF-1 receptor (IGF-1R)/IRS2/PI3K pathways.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!