In the era of precision medicine, the identification of several predictive biomarkers and the development of innovative therapies have dramatically increased the request of tests to identify specific targets on cytological or histological samples, revolutionizing the management of the tumoral biomaterials. The Food and Drug Administration (FDA) has recently approved a selective neurotrophic tyrosine receptor kinase (NTRK) inhibitor, larotrectinib. Contemporarily, the development of multi-kinase inhibitors with activity in tumors carrying TRK fusions is ongoing. Chromosomal translocations involving the NTRK1, NTRK2, and NTRK3 genes result in constitutive activation and aberrant expression of TRK kinases in numerous cancer types. In this context, the identification of tumors harboring TRK fusions is crucial. Several methods of detection are currently available. We revise the advantages and disadvantages of different techniques used for identifying TRK alterations, including immunohistochemistry, fluorescence in situ hybridization, reverse transcriptase polymerase chain reaction, and next generation sequencing-based approaches. Finally, we propose a diagnostic algorithm based on histology and the relative frequency of TRK fusions in each specific tumor, considering also the economic feasibility in the clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7279365 | PMC |
http://dx.doi.org/10.3390/ijms21103718 | DOI Listing |
Zhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, People's Hospital of Zhengzhou University/People's Hospital of Henan University, Zhengzhou 450043, China.
To investigate the expression pattern of pan-TRK protein in colorectal cancers with NTRK gene fusion and mismatch repair deficient (dMMR) and to analyze its molecular pathological characteristics. A total of 117 dMMR colorectal cancers diagnosed in the Department of Pathology of Henan Provincial People's Hospital, Zhengzhou, China from 2020 to 2023 were collected. Immunohistochemistry (IHC), fluorescence in situ hybridization (FISH) and DNA/RNA-based next-generation sequencing (NGS) were used to detect pan-TRK protein expression and fusion partner genes in tumors, and to further explore the correlation between pan-TRK staining patterns and partner genes.
View Article and Find Full Text PDFPathol Oncol Res
January 2025
Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary.
The () gene family is of rising importance as their fusions are oncogenic, and specific target drugs are available to inhibit the chimera proteins. Pan-TRK antibody, which shows the overexpression of the genes, is a useful tool to detect tumors with or without gene alterations, due to high negative predictive value. Though it is well known that pan-TRK immunopositivity is usually not connected to fusion, the role of other possible genetic alterations is under-researched.
View Article and Find Full Text PDFWorld J Clin Cases
January 2025
Department of Obstetrics and Gynecology, Keimyung University School of Medicine, Daegu 42601, South Korea.
Background: The classification of uterine sarcomas is based on distinctive morphological and immunophenotypic characteristics, increasingly supported by molecular genetic diagnostics. Data on neurotrophic tyrosine receptor kinase () gene fusion-positive uterine sarcoma, potentially aggressive and morphologically similar to fibrosarcoma, are limited due to its recent recognition. Pan-TRK immunohistochemistry (IHC) analysis serves as an effective screening tool with high sensitivity and specificity for -fusion malignancies.
View Article and Find Full Text PDFEur J Med Chem
January 2025
Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:
Tropomyosin receptor kinase (TRK) has emerged as a promising therapeutic target in cancers driven by NTRK gene fusions. Herein, we report a highly potent TRK inhibitor, C11, developed using bioisosteric replacement and computer-aided drug design (CADD) strategies. Compound C11 demonstrated significant antiproliferative effects against TRK-dependent cell lines (Km-12), and exhibited a dose-dependent inhibition of both colony formation and cell migration.
View Article and Find Full Text PDFInt J Gynecol Pathol
December 2024
Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P.R. China.
The incidence of neurotrophic tyrosine kinase receptor (NTRK) fusion uterine sarcoma is extremely low, and reports have been mostly focused on cases localized to the cervix. So far, only 4 cases have been reported of the uterine corpus. In this study, we reported a case of NTRK fusion corpus sarcoma.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!