AI Article Synopsis

  • HIV-1 infection involves complex interactions between the virus and cellular factors, and traditional drug discovery has mainly targeted individual viral proteins.
  • An innovative and efficient screening method was developed to identify inhibitors targeting various stages of the HIV-1 lifecycle, using a stable luciferase-based assay that meets biosafety level 1 standards.
  • The study screened over 26,000 compounds, leading to the identification of 93 potential inhibitors, with a strong validation of results across different testing formats, showcasing the effectiveness of the new lentiviral assay system.

Article Abstract

HIV-1 infection is a complex, multi-step process involving not only viral, but also multiple cellular factors. To date, drug discovery methods have primarily focused on the inhibition of single viral proteins. We present an efficient and unbiased approach, compatible with biosafety level 1 (BSL-1) conditions, to identify inhibitors of HIV-1 reverse transcription, intracellular trafficking, nuclear entry and genome integration. Starting with a fluorescent assay setup, we systematically improved the screening methodology in terms of stability, efficiency and pharmacological relevance. Stability and throughput were optimized by switching to a luciferase-based readout. BSL-1 compliance was achieved without sacrificing pharmacological relevance by using lentiviral particles pseudo-typed with the mouse ecotropic envelope protein to transduce human PM1 T cells gene-modified to express the corresponding murine receptor. The cellular assay was used to screen 26,048 compounds selected for maximum diversity from a 200,640-compound in-house library. This yielded z' values greater than 0.8 with a hit rate of 3.3% and a confirmation rate of 50%. We selected 93 hits and enriched the collection with 279 similar compounds from the in-house library to identify promising structural features. The most active compounds were validated using orthogonal assay formats. The similarity of the compound profiles across the different platforms demonstrated that the reported lentiviral assay system is a robust and versatile tool for the identification of novel HIV-1 inhibitors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7290285PMC
http://dx.doi.org/10.3390/v12050580DOI Listing

Publication Analysis

Top Keywords

compatible biosafety
8
pharmacological relevance
8
in-house library
8
high-throughput hiv-1
4
hiv-1 drug
4
drug screening
4
screening platform
4
platform based
4
based lentiviral
4
lentiviral vectors
4

Similar Publications

A kidney protection nanoparticle based on Alpinia oxyphylla fructus polysaccharide by modulating macrophage polarization.

Int J Biol Macromol

December 2024

Key Laboratory of Tropical Translational Medicine of Ministry of Education, Hainan Provincial Key Laboratory of Research and Development on Tropical Herbs, Haikou Key Laboratory of Li Nationality Medicine, School of Pharmacy, Hainan Medical University, Haikou 571199, China. Electronic address:

The use of natural polysaccharides from traditional Chinese medicine as carrier materials has great potentiality in drug delivery. Nootkatone (NKT) demonstrated good pharmacological activity in treating kidney injury, but its solubility and bioavailability are not very good which may affect the effectiveness of its therapeutic effect. Alpinia oxyphylla fructus polysaccharide (AOP), as a plant polysaccharide, has multiple pharmacological activities and may help to provide synergy for NKT.

View Article and Find Full Text PDF

FA-PEG Modified ZIF(Mn) Nanoparticles Loaded with Baicalin for Imaging-Guided Treatment of Melanoma in Mice.

Int J Nanomedicine

December 2024

Department of Dermatology, Affiliated Hospital of Shandong Second Medical University, School of Clinical Medicine, Shandong Second Medical University, Weifang, 261031, People's Republic of China.

Background: Melanoma is an aggressive skin tumor with limited therapeutic options due to rapid proliferation, early metastasis, and poor prognosis. Baicalin (BA), a natural flavonoid, shows promise in inducing ferroptosis and apoptosis but faces challenges of poor solubility and bioavailability. To address these issues, we developed a multifunctional drug delivery system: manganese-doped ZIF-8 nanoparticles (ZIF(Mn)) loaded with BA and modified with folic acid (FA) and polyethylene glycol (PEG).

View Article and Find Full Text PDF

End-stage liver diseases have an increasing impact worldwide, exacerbated by the shortage of transplantable organs. Recognized as one of the promising solutions, tissue engineering aims at recreating functional tissues and organs . The integration of bioprinting technologies with biological 3D models, such as multi-cellular spheroids, has enabled the fabrication of tissue constructs that better mimic complex structures and functionality of organs.

View Article and Find Full Text PDF

Failure of orthopedic implants due to localized bacterial infections, inflammation and insufficient blood supply is always problematic. In this study, strontium-doped titanium dioxide nanotubes (STN) were firstly prepared on titanium surface, and then lactoferrin (LF) was loaded into strontium-doped nanotubes (STN) by the phase transition method, eventually the LF/TCEP-STN composite coating was successfully prepared. With the innate antimicrobial properties of LF, LF/TCEP-STN was effected against E.

View Article and Find Full Text PDF

Magnesium-Impregnated Membrane Promotes Bone Regeneration in Rat Skull Defect by N-Linked Glycosylation of SPARC via MagT1.

Adv Healthc Mater

December 2024

Department of Orthopaedics, Zhongshan Hospital, Fudan University, Xuhui District Fenglin Road, Shanghai, 200030, China.

Article Synopsis
  • Autograft has traditionally been the preferred method for bone surgeries, but synthetic implants are gaining popularity due to better biosafety and standardized procedures.
  • Researchers developed a magnesium-impregnated membrane that releases magnesium ions to promote bone formation and studied its properties using advanced techniques like SEM and TGA.
  • The study showed that grafted magnesium hydroxide particles integrate well in rat skull defects, highlighting their potential for creating bio-friendly, effective biomedical materials.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!