Large polymer residues introduced by the graphene transfer process is still a major obstacle limiting the integration of chemical vapor deposition (CVD)-grown graphene into next-generation electronic and photoelectronic devices. Here we use cera alba, a natural and environmental-friendly material that derives from honeycomb, as the supporting layer for ultraclean graphene transfer. The transferred graphene has a low surface roughness with a surface height fluctuation within 5 nm and an only 80.08% average sheet resistance of the polymethyl methacrylate (PMMA)-transferred graphene. Further, the ultraclean graphene is used as electrodes for the PbI-based UV photodetector and enables a 135% improvement on responsivity. The cera alba assisted transfer method reported here could achieve clean and damage-free graphene transfer, promoting the application of CVD-grown two-dimensional (2D) materials in large-area thin-film electronic and optoelectronic devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab9789 | DOI Listing |
Adv Mater
March 2025
School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, P. R. China.
Bioelectrodes function as a critical interface for signal transduction between living organisms and electronics. Conducting polymers (CPs), particularly poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate), are among the most promising materials for bioelectrodes, due to their electrical performance, high compactness, and ease of processing, but often suffer from degradation or de-doping even in some common environments (e.g.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
College of Energy, Soochow University, Suzhou 215006, P. R. China.
Flexible aqueous zinc-ion batteries (AZIBs) are considered one of the most attractive flexible devices owing to their high theoretical capacity, low cost, and high security. However, the formation of Zn dendrites and the poor flexibility of the Zn material greatly impede the application of wearable AZIBs. Herein, by transferring graphene onto the surface of polyethylene terephthalate-indium tin oxide (PET-ITO-G), a substrate combining excellent flexibility and dendrite suppression ability was prepared.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2025
School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, PR China. Electronic address:
Developing low-oxidant, high efficiency catalysts is critical to meet the green-circular goal in water treatments. Heteroatom-doped graphite-based carbon nitride carrier catalysts are among the most promising candidate materials in water purification catalysis. In this research, a bimetallic catalyst (Fe-Cu@SNC), featuring dual reaction centers, was prepared using a mass-producible co-precipitation method.
View Article and Find Full Text PDFJ Environ Manage
March 2025
Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Skudai, 81310, Johor, Malaysia; Department of Environment Johor, Pusat Perdagangan Danga Utama, Wisma Alam Sekitar, 46, Jalan Pertama, 81300, Johor Bahru, Johor, Malaysia.
Plastic is a widely used material across various industries, including construction, packaging, healthcare, and automotive, among others. Global plastic production was estimated at 311 million tonnes in 2014 and is expected to double within two decades, continuing to rise towards 2050. As plastic pollution poses significant environmental and health risks, effective recycling and upcycling strategies are crucial for sustainable waste management.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2025
State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Lithium-rich manganese oxide (LRMO) is a promising high-energy-density material for high-voltage lithium-ion batteries, but its performance is hindered by interfacial side reactions, transition metal dissolution, and oxygen release. To address these issues, we propose a high-voltage electrolyte strategy that utilizes cosolvent and additive synergy to create stable dual interphases at both the cathode and anode. Specifically, lithium difluoro(oxalato)borate (LiDFOB) additive sacrificially decomposes to form a uniform yet stable cathode-electrolyte interphase (CEI) layer, while cosolvent of bis(2,2,2-trifluoroethyl) carbonate (BTFEC) effectively adjusts the solvation structure and synergistically stabilizes the solid-electrolyte interphase (SEI) on the anode, ultimately achieving ultrahigh cycle stability and fast-charging feasibility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!