Glutaredoxins (Grxs) are small (10-15 kDa) glutathione (GSH) - dependent redox proteins. The role of Grxs are well documented in tolerance to heavy metal stress in prokaryotic and mammalian systems and a few plant genera, but is poorly understood in plants against drought. In the present study, two rice glutaredoxin (Osgrx) genes (LOC_Os02g40500 and LOC_Os01g27140) responsible for tolerance against heavy metal stress have been studied for investigating their role against drought. Each glutaredoxin gene was over-expressed in Arabidopsis thaliana to reveal their role in drought stress. The relative expression of both Osgrx genes was higher in the transgenic lines. Transgenic lines of both Osgrxs showed longer roots, higher seed germination, and survival efficiency during drought stress. The physiological parameters (P, g, E, WUE, qP, NPQ and ETR), antioxidant enzymes (GRX, GR, GPX, GST, APX, POD, SOD, CAT, DHAR, and MDHAR), antioxidant molecules (ascorbate and GSH) and stress-responsive amino acids (cysteine and proline) levels were additionally increased in transgenic lines of both Osgrxs to provide drought tolerance. The outcomes from this study strongly determined that each Osgrx gene participated in the moderation of drought and might be utilized in biological engineering strategies to overcome drought conditions in different crops.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ecoenv.2020.110721DOI Listing

Publication Analysis

Top Keywords

drought stress
12
transgenic lines
12
rice glutaredoxin
8
genes loc_os02g40500
8
loc_os02g40500 loc_os01g27140
8
drought
8
tolerance heavy
8
heavy metal
8
metal stress
8
osgrx genes
8

Similar Publications

Tree responses to drought are well studied, but the interacting effects of drought timing on growth, water use, and stress legacy are less understood. We investigated how a widespread conifer, Scots pine, responded to hot droughts early or late in the growing season, or to both. We measured sap flux, stem growth, needle elongation, and leaf water potential (Ψ) to assess the impacts of stress timing on drought resilience in Scots pine saplings.

View Article and Find Full Text PDF

Arabidopsis glycosyltransferase UGT86A1 promotes plant adaptation to salt and drought stresses.

Physiol Plant

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, China.

UDP-glycosyltransferases (UGTs) are the largest glycosyltransferase family developed during the evolution of the plant kingdom. However, their physiological significance in abiotic stress adaptation in land plants is largely unknown. In this study, we identified a UGT gene from Arabidopsis thaliana, UGT86A1, that was significantly induced by salt and drought stresses.

View Article and Find Full Text PDF

Melatonin is considered an effective bio-stimulant that is crucial in managing several abiotic stresses including drought. However, its potential mechanisms against drought stress in fragrant roses are not well understood. Here, we aim to investigate the role of melatonin on plants cultivated under drought stress (40 % field capacity) and normal irrigation (80 % field capacity).

View Article and Find Full Text PDF

Jujube (Ziziphus ujuba Mill.) holds great importance as a fruit tree in China, with strong tolerance to drought and saline stress, but its growth is limited by vulnerability to cold stress. Consequently, the role of MAPK cascades in mediating jujube cold stress response remains unclear, with the specific function of ZjMAPKK4 in this context yet to be fully elucidated.

View Article and Find Full Text PDF

Understanding and predicting plant water dynamics during and after water stress is increasingly important but challenging because the high-dimensional nature of the soil-plant-atmosphere system makes it difficult to identify mechanisms and constrain behaviour. Datasets that capture hydrological, physiological and meteorological variation during changing water availability are relatively rare but offer a potentially valuable resource to constrain plant water dynamics. This study reports on a drydown and re-wetting experiment of potted Populus trichocarpa, which intensively characterised plant water fluxes, water status and water sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!