Generation of two hiPSC lines (MHHi016-A, MHHi016-B) from a primary ciliary dyskinesia patient carrying a homozygous 5 bp duplication (c.248_252dup (p.Gly85Cysfs*11)) in exon 1 of the CCNO gene.

Stem Cell Res

Leibniz Research Laboratories for Biotechnology and Artificial Organs (LEBAO), Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany; REBIRTH - Research Center for Translational Regenerative Medicine, Hannover Medical School, 30625 Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Germany.

Published: July 2020

Cyclin O (CCNO) is involved in cell cycle regulation and mutations of CCNO are linked to the rare genetic disease primary ciliary dyskinesia (PCD). Mutations in CCNO are associated with reduced cilia number and cilia agenesis on epithelia of the respiratory tract. This article deals with the description of two hiPSC lines generated from a PCD patient carrying a mutation in exon 1 of the CCNO gene. The lines offer a valuable tool for in vitro modeling PCD pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scr.2020.101850DOI Listing

Publication Analysis

Top Keywords

hipsc lines
8
primary ciliary
8
ciliary dyskinesia
8
patient carrying
8
exon ccno
8
ccno gene
8
mutations ccno
8
ccno
5
generation hipsc
4
lines mhhi016-a
4

Similar Publications

Generation and characterization of three induced pluripotent stem cell lines for modeling coronary artery vasospasm.

Stem Cell Res

December 2024

Cardiology Section, Medical Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Radiology Service, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA; Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Department of Radiology, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.

Coronary artery vasospasm (CAV) is characterized by transient constriction of epicardial coronary arteries leading to angina. Its disease mechanisms are multifactorial but has centered mostly on endothelial dysfunction and smooth muscle hyperreactivity. To facilitate the investigation of these mechanisms in cell culture, we generated and characterized three induced pluripotent stem cell (iPSC) lines from patients with CAV.

View Article and Find Full Text PDF

BAG3 contributes to the maintenance of proteostasis through chaperone-assisted selective autophagy. This function is impaired by a single amino acid exchange (P209L) in the protein, which causes myofibrillar myopathy-6 (MFM6). This disease manifests as severe skeletal muscle weakness, neuropathy and restrictive cardiomyopathy.

View Article and Find Full Text PDF

Tagless LysoIP for immunoaffinity enrichment of native lysosomes from clinical samples.

J Clin Invest

December 2024

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.

Lysosomes are implicated in a wide spectrum of human diseases including monogenic lysosomal storage disorders (LSDs), age-associated neurodegeneration and cancer. Profiling lysosomal content using tag-based lysosomal immunoprecipitation (LysoTagIP) in cell and animal models has substantially moved the field forward, but studying lysosomal dysfunction in human patients remains challenging. Here, we report the development of the 'tagless LysoIP' method, designed to enable the rapid enrichment of lysosomes, via immunoprecipitation, using the endogenous integral lysosomal membrane protein TMEM192, directly from clinical samples and human cell lines (e.

View Article and Find Full Text PDF

Frontotemporal dementia with parkinsonism-17 is a neurodegenerative disease characterised by pathological aggregation of the tau protein with the formation of neurofibrillary tangles and subsequent neuronal death. The inherited form of frontotemporal dementia can be caused by mutations in several genes, including the MAPT gene on chromosome 17, which encodes the tau protein. As there are currently no medically approved treatments for frontotemporal dementia, there is an urgent need for research using in vitro cell models to understand the molecular genetic mechanisms that lead to the development of the disease, to identify targets for therapeutic intervention and to test potential drugs to prevent neuronal death.

View Article and Find Full Text PDF

Wiskott-Aldrich syndrome (WAS) is a severe X-linked disorder caused by loss-of-function mutations in the WAS gene, responsible for encoding WASP, a key regulator of actin cytoskeleton in all hematopoietic cells except red blood cells. The mechanism underlying microthrombocytopenia, a distinctive feature of WAS and a major contributor to mortality, remains not fully elucidated. In this study, using different gene editing strategies, we corrected mutations in patient-derived WAS-induced pluripotent stem cell lines, generating isogeneic WAS iPSC lines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!