Alzheimer's disease (AD) is the most common form of dementia and is associated with the accumulation of amyloid-β (Aβ), a peptide whose aggregation has been associated with neurotoxicity. Drugs targeting Aβ have shown great promise in 2D in vitro models and mouse models, yet preclinical and clinical trials for AD have been highly disappointing. We propose that current in vitro culture systems for discovering and developing AD drugs have significant limitations; specifically, that Aβ aggregation is vastly different in these 2D cultures carried out on flat plastic or glass substrates vs. in a 3D environment, such as brain tissue, where Aβ confinement alters aggregation kinetics and thermodynamics. In this work, we identified attenuation of Aβ cytotoxicity in 3D hydrogel culture compared to 2D cell culture. We investigated Aβ structure and aggregation in solution vs. hydrogel using Transmission Electron Microscopy (TEM), Fluorescence Correlation Spectroscopy (FCS), and Thioflavin T (ThT) assays. Our results reveal that the equilibrium is shifted to stable extended β-sheet (ThT positive) aggregates in hydrogels and away from the relatively unstable/unstructured presumed toxic oligomeric Aβ species in solution. Volume exclusion imparted by hydrogel confinement stabilizes unfolded, presumably toxic species, promoting stable extended β-sheet fibrils. STATEMENT OF SIGNIFICANCE: Alzheimer's disease (AD) is a devastating disease and has been studied for over 100 years. Yet, no cure exists and only 5 prescription drugs are FDA-approved to temporarily treat the AD symptoms of declining brain functions related to thinking and memory. Why don't we have more effective treatments to cure AD or relieve AD symptoms? We propose that current culture methods based upon cells cultured on flat, stiff substrates have significant limitations for discovering and developing AD drugs. This study provides strong evidence that AD drugs should be tested in 3D culture systems as a step along the development pathway towards new, more effective drugs to treat AD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.actbio.2020.05.030 | DOI Listing |
Polymers (Basel)
December 2024
Hunan Mine Carbon Sequestration and Sink Enhancement Engineering Technology Research Center, Changsha 410151, China.
As is widely accepted, cumulative strain and improvement mechanisms of stabilized soil are critical factors for the long-term reliable operation of expressways and high-speed railways. Based on relevant research findings, xanthan gum biopolymer is regarded as a green and environmentally friendly curing agent in comparison to traditional stabilizers, such as cement, lime, and fly ash. However, little attention has been devoted to the cumulative strain and improvement mechanisms of soil reinforced by xanthan gum biopolymer under traffic loading.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, McMaster University, 1280 Main Street West Hamilton, Hamilton, Ontario, L8S 4L7, Canada.
Inspired by the emerging potential of photoluminescent hydrogels, this work unlocks new avenues for advanced biosensing, bioimaging, and drug delivery applications. Carbon quantum dots (CDs) are deemed particularly promising among various optical dyes, for enhancing polymeric networks with superior physical and chemical properties. This study presents the synthesis of CDs derived from Prunella vulgaris, a natural plant resource, through a single-step hydrothermal process, followed by their uniform integration into hydrogel matrices via an in situ free radical graft polymerization.
View Article and Find Full Text PDFMacromol Rapid Commun
January 2025
Key Laboratory of Multi-Scale Manufacturing Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing College, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China.
As a recent focal point of research, soft electronics encompass various factors that synergistically enhance their mechanical properties and ensure stable electrical performance. However, challenges such as immiscible conductive fillers, poor phase interfaces, and unstable conductive networks hinder the overall efficacy of these materials. To address these issues, a hydrogel featuring an oriented interpenetrating network structure (OIPN) is developed.
View Article and Find Full Text PDFAdv Mater
January 2025
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, 8092, Switzerland.
Gels
December 2024
Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Ciencias Químicas, Ciudad Autónoma de Buenos Aires 1113, Argentina.
In this work, the mechanical properties of hydrogels based on linear polyethyleneimine (PEI) chemically crosslinked with ethyleneglycoldiglycidyl ether (EGDE) were improved by the ionic crosslinking with sodium tripolyphosphate (TPP). To this end, the quaternization of the nitrogen atoms present in the PEI structure was conducted to render a network with a permanent positive charge to interact with the negative charges of TPP. The co-crosslinking process was studied by H high-resolution magic angle spinning (H HRMAS) NMR and X-ray photoelectron spectroscopy (XPS) in combination with organic elemental analysis and inductively coupled plasma mass spectrometry (ICP-MS).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!