Chronic pain and depression commonly occur together so dual-acting agents might be particularly useful. The population of patients with chemotherapy-induced neuropathy is increasing in parallel with the increase of population of cancer survivors and there is a compelling need for satisfactory treatment of symptoms of neuropathy and concomitant depression. We examined the effects of vortioxetine, a novel antidepressant with unique mechanism of action, on pain hypersensitivity and depression-like behavior in oxaliplatin-induced neuropathy model in mice (OIPN). Vortioxetine (1-10 mg/kg, p.o.) significantly and dose-dependently reduced mechanical allodynia in von Frey test and cold allodynia in acetone test in OIPN mice, in both repeated prophylactic and acute therapeutic treatment regimens. It also reduced depression-like behavior in the forced swimming test in OIPN mice, in both treatment paradigms. Its antiallodynic and antidepressive-like effects were comparable to those exerted by duloxetine (1-15 mg/kg, p.o.). The antiallodynic and antidepressive-like effects of repeatedly administered vortioxetine might be related to the increased content of 5-hydroxytryptamine (5-HT) and noradrenaline (NA), detected in the brainstem of treated OIPN mice. These results indicate that vortioxetine could be potentially useful in prevention and treatment of chemotherapy-induced neuropathy, for the relief of pain and concomitant depressive symptoms. It should be further tested to this regard in clinical settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pnpbp.2020.109975DOI Listing

Publication Analysis

Top Keywords

depression-like behavior
12
oipn mice
12
pain hypersensitivity
8
oxaliplatin-induced neuropathy
8
chemotherapy-induced neuropathy
8
test oipn
8
antiallodynic antidepressive-like
8
antidepressive-like effects
8
vortioxetine
5
mice
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!