Preparation and characterization of crosslinked porous starch hemostatic.

Int J Biol Macromol

College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China.

Published: October 2020

In order to develop starch hemostatic materials with excellent hemostatic properties, the preparation of crosslinked porous starch (SPS) with sodium trimetaphosphate (STMP) as cross-linking agent was studied in this paper. When the solid-liquid ratio of porous starch (PS) was 30%, the mass ratio of cross-linking agent to starch was 0.04-1, and the SPS was crosslinked at pH 10.0, 55 °C for 50-60 min, the water absorption ratio and swelling ratio of SPS reach up to 160.5% and 239.1%, respectively. The characterization by infrared spectra, scanning electron microscopy and X-Ray diffraction spectra confirmed that the structure of SPS is similar to that of PS. The degradation experiment in vitro indicated that the degradation effect of PS was better than that of SPS. The whole blood coagulation kinetics experiment showed that SPS could promote the formation of blood clot, and the adsorption experiment of red blood cells in vitro showed that SPS could adsorb red blood cells. The average hemostasis time of SPS in tail amputation 1 cm and liver laceration were 181.03 s and 179.30 s.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2020.05.189DOI Listing

Publication Analysis

Top Keywords

porous starch
12
crosslinked porous
8
starch hemostatic
8
sps
8
cross-linking agent
8
red blood
8
blood cells
8
starch
5
preparation characterization
4
characterization crosslinked
4

Similar Publications

The purpose of this study was to investigate the application of an innovative extrusion-based 3D food printing (3DFOODP) technique in developing rice protein-starch (RP-S) gel-based products. The effects of 3DFOODP conditions were examined, which included variations in the concentrations of rice protein (RP) and corn starch (S) (15, 17.5, and 20 wt.

View Article and Find Full Text PDF

Effect of (-)-epigallocatechin gallate palmitate complexation under mild temperature on the structure and nutritional functions of porous rice starch.

Food Chem

January 2025

Experimental Education/Administration Center, National Demonstration Center for Experimental Education of Basic Medical Sciences, Key Laboratory of Functional Proteomics of Guangdong Province, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, Guangdong Province, China. Electronic address:

The correlation among the hierarchical structure, physicochemical properties, and nutritional functions of porous rice starch after absorbing and complexing with (-)-epigallocatechin gallate palmitate (P-EGCG) under mild temperatures at different reaction times were investigated. The P-EGCG loading rate (19.6 %-28.

View Article and Find Full Text PDF

Understanding the role of Radix Paeoniae Alba polysaccharide for corn starch gel amelioration: Physicochemical, structural, and digestive properties.

Int J Biol Macromol

January 2025

College of Traditional Chinese Medicine, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China; Comprehensive Experimental Center, Hebei University, No. 342 Yuhua East Road, Lianchi District, Baoding 071002, China. Electronic address:

To ameliorate the limitations of corn starch (CS) processing, Radix Paeoniae Alba polysaccharide (RPAP) was used to modulate the physicochemical and digestive properties of CS. The main purpose of this paper is to investigate the effects of RPAP on the pasting, rheological, thermal, structural, and digestive properties of CS. The results show that the addition of RPAP could increase the peak viscosity and final viscosity of CS gel, and RPAP could increase the apparent viscosity, storage modulus, loss modulus, hardness, and strength of CS gel, implying that RPAP can effectively improve the pasting and viscoelasticity properties of CS.

View Article and Find Full Text PDF

Novel insights into released hydrochar particle derived from typical high nitrogen waste biomass: Special properties, microstructure and formation mechanism.

Waste Manag

December 2024

Key Laboratory of Agro-Environment in Downstream of Yangtze Plain/Scientific Observing and Experimental Station of Arable Land Conservation (Jiangsu), Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China. Electronic address:

Article Synopsis
  • Hydrothermal carbonization (HTC) transforms waste biomass, particularly high nitrogen feedstocks like kitchen garbage and blue-green algae, into valuable resources, but the characteristics of small hydrochar particles remain underexplored.
  • Hydrochar particles show unique properties such as poor porosity, moderate pH, negative charge, and high hydrophobicity, which differ from the original hydrochar and secondary char derived from simpler biomasses.
  • The study identifies complex formation mechanisms through various chemical reactions in the hydrochar microparticles, highlighting their potential as soil fertilizers and decontaminants while emphasizing that effectiveness is influenced by HTC temperature and type of biomass used.
View Article and Find Full Text PDF

Structural and physicochemical properties of porous starch effected by different microwave involved stages under enzymatic hydrolysis.

Int J Biol Macromol

December 2024

Key Laboratory of Food Science and Engineering of Heilongjiang Province, College of Food Engineering, Harbin University of Commerce, Harbin 150076, China. Electronic address:

Microwave-assisted enzymatic hydrolysis is an effective method to shorten the preparation time of porous starch. This study aims to investigate the effect of microwave treatment before/during/after enzymatic hydrolysis on the properties of porous starch. The results showed that the physicochemical properties of the porous starch obtained by microwave-assisted enzymatic hydrolysis were improved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!