Mdm4 controls ureteric bud branching via regulation of p53 activity.

Mech Dev

Tulane University School of Medicine, Department of Pediatrics, Section of Pediatric Nephrology, New Orleans, LA 70112, United States of America. Electronic address:

Published: September 2020

The antagonism between Mdm2 and its close homolog Mdm4 (also known as MdmX) and p53 is vital for embryogenesis and organogenesis. Previously, we demonstrated that targeted disruption of Mdm2 in the Hoxb7+ ureteric bud (Ub) lineage, which gives rise to the renal collecting system, causes renal hypodysplasia culminating in perinatal lethality. In this study, we examine the unique role of Mdm4 in establishing the collecting duct system of the murine kidney. Hoxb7Cre driven loss of Mdm4 in the Ub lineage (Ub) disrupts branching morphogenesis and triggers UB cell apoptosis. Ub kidneys exhibit abnormally dilated Ub tips while the medulla is hypoplastic. These structural alterations result in secondary depletion of nephron progenitors and nascent nephrons. As a result, newborn Ub mice have hypo-dysplastic kidneys. Transcriptional profiling revealed downregulation of the Ret-tyrosine kinase pathway components, Gdnf, Wnt11, Sox8, Etv4 and Cxcr4 in the Ub mice relative to controls. Moreover, the expression levels of the canonical Wnt signaling members Axin2 and Wnt9b are downregulated. Mdm4 deletion upregulated p53 activity and p53-target gene expression including Cdkn1a (p21), Gdf15, Ccng1, PERP, and Fas. Germline loss of p53 in Ub mice largely rescues kidney development and terminal differentiation of the collecting duct. We conclude that Mdm4 plays a unique and vital role in Ub branching morphogenesis and collecting system development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487065PMC
http://dx.doi.org/10.1016/j.mod.2020.103616DOI Listing

Publication Analysis

Top Keywords

ureteric bud
8
p53 activity
8
collecting system
8
collecting duct
8
branching morphogenesis
8
mdm4
6
mdm4 controls
4
controls ureteric
4
bud branching
4
branching regulation
4

Similar Publications

ASH2L-Mediated H3K4 Methylation and Nephrogenesis.

J Am Soc Nephrol

January 2025

Renal Division, Department of Internal Medicine, Xin Hua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.

Background: Many congenital anomalies of the kidney and urinary tract involve deficits in the number of nephrons, which are associated with a higher risk of hypertension and chronic kidney disease later in life. Prior work has implicated histone modifications in regulating kidney lineage-specific gene transcription and nephron endowment. Our earlier study suggested that ASH2L, a core subunit of the H3K4 methyltransferase complex, plays a role in ureteric bud morphogenesis during mammalian kidney development.

View Article and Find Full Text PDF

Kidney explant cultures are traditionally carried out at air-liquid interfaces, which disrupts 3D tissue structure and limits interpretation of developmental data. To overcome this limitation, we developed a 3D culture technique using hydrogel embedding to capture morphogenesis in real time. We show that 3D culture better approximates -like niche spacing and dynamic tubule tip rearrangement, as well as -like presentation of branching defects under perturbations to glial cell-derived neurotrophic factor (GDNF)- RE arranged during T ransfection (RET) tyrosine kinase signaling.

View Article and Find Full Text PDF

Zinner syndrome is an extremely uncommon congenital anomaly of the male urogenital tract. It is attributed to an embryological anomaly that arises in the distal segment of the mesonephric or Wolffian duct. It is the inadequate migration of the ureteric bud that contributes to the failure of differentiation of the metanephric blastema, which ultimately results in ipsilateral renal agenesis and atresia of the ejaculatory duct.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists are studying how tiny structures in the kidneys form during development, especially how they branch out and work together.
  • They discovered that as these structures grow, they get packed tightly together, which can change how the cells make decisions.
  • The researchers used experiments and math to understand this packing and found that it affects how the kidneys develop over time in mice and might help in creating new tissues for medical purposes.
View Article and Find Full Text PDF

The kidney maintains homeostasis through an array of parallel nephrons, which all originate in development as isolated epithelial structures that later fuse through their distal poles to a system of collecting ducts (CD). This connection is required to generate functional nephrons by providing a pathway for excretion of metabolic waste and byproducts. Currently, methods for differentiating human pluripotent stem cells into kidney organoids generate nephrons that lack CDs and instead terminate as blind-ended tubules.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!