The objective of this work was to determine how aronia berry polyphenols and its microbial catabolites improve intestinal barrier function. Caco-2 cells were cultured on transwell plates and allowed differentiate to form a model intestinal barrier, having baseline transepithelial electrical resistance (TEER) ≥ 300 Ω cm. Barrier function of differentiated Caco-2 cells was compromised by the addition of an inflammatory cocktail (IC: TNF-α, IL-1β, and IFN-γ to the basolateral media and lipopolysaccharide to the apical media). Polyphenol-rich aronia berry powder or individual polyphenols representative of parent compounds or catabolites were applied to the basolateral media concurrently with IC. TEER was determined subsequently by chopstick electrode or continuous analysis. Permeability was determined by application of 4 kDa FITC-dextran or Lucifer yellow. Expression of tight junction proteins was assessed by qRT-PCR analysis. Application of the IC to differentiated Caco-2 cells routinely reduced TEER by ~40% within 24 h. Individual polyphenols representative of parent compounds or phenolic microbial catabolites at 100 μM did not inhibit IC reduction of TEER in Caco-2 cells. Whole aronia berry powder inhibited loss of TEER by ~50% at 24 h after application of the IC. Furthermore 5 mg/mL of aronia berry powder prevented an IC-induced barrier permeability of FITC-dextran and Lucifer yellow. After 12 h of IC treatment, Caco-2 cells had increased claudin 1 (CLDN1) relative to the untreated control. Application of aronia berry powder inhibited CLDN1 and also increased expression of zonula ocludens-1 (ZO-1) after 12 h. In summary, aronia berry, but not its microbiota-derived catabolites improved intestinal barrier function in a cellular model of chronic colonic inflammation. In this case, improved barrier function was associated with modulation of tight junction expression.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.abb.2020.108409 | DOI Listing |
Plant Foods Hum Nutr
December 2024
Institute for Medicinal Plants Research "Dr. Josif Pančić", Belgrade, 11000, Serbia.
Cellulite is an aesthetically distressing skin condition occurring in 80-90% of females and manifesting as dimples and depressions, producing an uneven surface to the skin. Our aim was to evaluate the effect of combined oral consumption of two dietary supplements based on chokeberry and tart cherry juices over a period of 32 days on cellulite reduction. Twenty women aged 21-49 with a cellulite grade of 1-2 according to the Nurnberger-Muller scale were participating in the study.
View Article and Find Full Text PDFFood Res Int
November 2024
Department of Pharmaceutical Botany, "Iuliu Hațieganu" University of Medicine and Pharmacy, Gheorghe Marinescu Street 23, 400337 Cluj-Napoca, Romania; Laboratory of Chromatography, Institute of Advanced Horticulture Research of Transylvania, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania. Electronic address:
Black chokeberry (Aronia melanocarpa (Michx.) Elliott) is recognized for its potential health benefits, largely attributed to its high phenolic content. However, many phenolic compounds possess a low bioavailability, potentially limiting their beneficial effects.
View Article and Find Full Text PDFACS Omega
November 2024
Department of Natural Sciences, University of Maryland Eastern Shore, 1 Backbone Road, Princess Anne, Maryland 21853, United States.
is a cultivated species originating from crossbreeding the wild species , also known as the black chokeberry, and European mountain ash . The aronia fruit is dark purple, which can be attributed to the high content of anthocyanins, other flavonoids, and polyphenols. Aronia's reputation as a superberry entices small farms to use it as a prospective specialty crop.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, Jilin 130112, China. Electronic address:
Aronia Melanocarpa (Michx.) Elliott fruit has been extensively used in the food and medicinal fields. This study aimed to analyze the physicochemical properties of a polysaccharide fraction (AMP2) isolated from this fruit for the first time and investigated its immune regulatory mechanism.
View Article and Find Full Text PDFSci Rep
November 2024
Institute of Food Technology and Analysis, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, 2/22 Bohdana Stefanowskiego, 90-537, Lodz, Poland.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!