Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA-TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA-TV drew on extensive datasets on tropical tree traits and long-term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade-tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand-level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand-level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA-TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15188DOI Listing

Publication Analysis

Top Keywords

tropical forests
24
tropical
11
size structure
8
earth system
8
representation tropical
8
tropical forest
8
tropical tree
8
geographic variation
8
forest biomass
8
forests
6

Similar Publications

Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning-damaged trees are a consistent resource for tropical saproxylic (i.e.

View Article and Find Full Text PDF

Climatically Specialized Lineages of Batrachochytrium dendrobatidis, and its Likely Asian Origins.

Ecohealth

January 2025

Guangxi Key Laboratory for Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, 530000, People's Republic of China.

Chytridiomycosis is a wildlife disease that has caused significant declines in amphibian populations and species extinctions worldwide. Asia, where the causal pathogens Batrachochytrium dendrobatidis (Bd) and B. salamndrivorans (Bsal) originated, has not witnessed mass die-offs.

View Article and Find Full Text PDF

Allometric equations for estimating above and belowground biomass of Colophospermum mopane in Mozambique.

Sci Rep

January 2025

Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique.

Seasonally dry tropical woodlands are vital for climate change mitigation, yet their full potential in carbon storage remains poorly understood. This is largely due to the lack of species-specific allometric models tailored to these ecosystems. To address this knowledge gap, this study aimed to develop species-specific biomass allometric equations (BAEs) for accurately estimating both above- and below-ground biomass of Colophospermum mopane (J.

View Article and Find Full Text PDF

Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence.

J Hazard Mater

January 2025

State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest.

View Article and Find Full Text PDF

Forest edges, where humans, mosquitoes, and wildlife interact, may serve as a nexus for zoonotic arbovirus exchange. Although often treated as uniform interfaces, the landscape context of edge habitats can greatly impact ecological interactions. Here, we investigated how the landscape context of forest edges shapes mosquito community structure in an Amazon rainforest reserve near the city of Manaus, Brazil, using hand-nets to sample mosquitoes at three distinct forest edge types.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!