A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Silicone models of the aortic root to plan and simulate interventions. | LitMetric

Objectives: The objective of this work was to develop technology to create 'soft' patient-specific models of semilunar heart valves, the aortic valve in particular, suitable for training and simulation of surgical and endovascular interventions.

Methods: Data obtained during routine cardiac contrast-enhanced multislice computed tomography were used to create 3-dimensional models of the aortic root. Three-dimensional models were used to create soft silicone models of the aortic root made by casting silicone into a negative mould printed with stereolithography. A comparison between the constructed models and the size of the aortic root was performed. We quantified how much time was needed for production of each model.

Results: Four patient-specific soft models of the aortic root were produced. Data from patients of different ages and body surface areas were used as prototypes. All models had minimum size errors. During development of this technology, production time per model was reduced from 63 to 39 h.

Conclusions: We have demonstrated the feasibility of making soft patient-specific 3-dimensional aortic root models using currently available technology. These models can be used both for training physicians in a variety of open surgical and endovascular interventions and for the study of complex aortic root geometry.

Download full-text PDF

Source
http://dx.doi.org/10.1093/icvts/ivaa068DOI Listing

Publication Analysis

Top Keywords

aortic root
28
models aortic
16
models
9
silicone models
8
aortic
8
surgical endovascular
8
root
7
root plan
4
plan simulate
4
simulate interventions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!