Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Many properties of layered materials change as they are thinned from their bulk forms down to single layers, with examples including indirect-to-direct band gap transition in 2H semiconducting transition metal dichalcogenides as well as thickness-dependent changes in the valence band structure in post-transition-metal monochalcogenides and black phosphorus. Here, we use angle-resolved photoemission spectroscopy to study the electronic band structure of monolayer ReSe, a semiconductor with a distorted 1T structure and in-plane anisotropy. By changing the polarization of incoming photons, we demonstrate that for ReSe, in contrast to the 2H materials, the out-of-plane transition metal d and chalcogen p orbitals do not contribute significantly to the top of the valence band, which explains the reported weak changes in the electronic structure of this compound as a function of layer number. We estimate a band gap of 1.7 eV in pristine ReSe using scanning tunneling spectroscopy and explore the implications on the gap following surface doping with potassium. A lower bound of 1.4 eV is estimated for the gap in the fully doped case, suggesting that doping-dependent many-body effects significantly affect the electronic properties of ReSe. Our results, supported by density functional theory calculations, provide insight into the mechanisms behind polarization-dependent optical properties of rhenium dichalcogenides and highlight their place among two-dimensional crystals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.0c01054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!