Mass spectrometry imaging (MSI) based on matrix-assisted laser desorption ionization (MALDI) is widely used in proteomics. However, matrix-free technologies are gaining popularity for detecting low molecular mass compounds. Small molecules were analyzed with nanostructured materials as ionization promoters, which produce low-to-no background signal, and facilitate enhanced specificity and sensitivity through functionalization. We investigated the fabrication and the use of black silicon and gold-coated black silicon substrates for surface-assisted laser desorption/ionization mass spectrometry imaging (SALDI-MSI) of animal tissues and human fingerprints. Black silicon was created using dry etching, while gold nanoparticles were deposited by sputtering. Both methods are safe for the user. Physicochemical characterization and MSI measurements revealed the optimal properties of the substrates for SALDI applications. The gold-coated black silicon worked considerably better than black silicon as the LDI-MSI substrate. The substrate was also compatible with imprinting, as a sample-simplification method that allows efficient transference of metabolites from the tissues to the substrate surface, without compound delocalization. Moreover, by modifying the surface with hydrophilic and hydrophobic groups, specific interactions were stimulated between surface and sample, leading to a selective analysis of molecules. Thus, our substrate facilitates targeted and/or untargeted metabolomics studies for various fields such as clinical, environmental, forensics, and pharmaceutical research.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.0c00201DOI Listing

Publication Analysis

Top Keywords

black silicon
24
mass spectrometry
12
spectrometry imaging
12
silicon substrates
8
gold-coated black
8
black
6
silicon
6
gold nanoparticle-assisted
4
nanoparticle-assisted black
4
mass
4

Similar Publications

Superhydrophobic surfaces are essential in various industries such as textiles, aviation, electronics and biomedical devices due to their exceptional water-repellent properties. Black silicon (b-Si) would be an ideal candidate for some applications due to its nanoscale topography made with a convenient lithography-free step and complementary metal-oxide-semiconductor (CMOS) compatible fabrication process. However, its use is hindered by serious issues with mechanical robustness.

View Article and Find Full Text PDF

The introduction of intermediate bands by hyperdoping is an efficient way to realize infrared light absorption of silicon. In this Letter, inert element (helium and argon for specific)-doped black silicon is obtained by helium ion-implantation followed by femtosecond pulse laser irradiation in an argon atmosphere based on near-intrinsic silicon substrates. Within the 200 nm of the silicon surface, the concentrations of helium and argon are both above the order of 10 cm.

View Article and Find Full Text PDF

Van der Waals (vdWs) materials are promising candidates for hetero-integration with silicon photonics toward miniaturization and integration. VdWs materials like molybdenum telluride and black phosphorus, despite being prominent, exhibit air sensitivity, and their room temperature emissions can be significantly broadened by tens of meV. Here, a self-encapsulation strategy is developed to scalably synthesize robust 2D vdWs ErOCl with sub-meV narrow emissions at the telecom C-band.

View Article and Find Full Text PDF

The cadherin superfamily of proteins is critical for cell-cell interactions and demonstrates tissue-specific expression profiles. In cancers, disruption of cell-cell adhesion is frequently associated with oncogenesis and metastasis. As such, these proteins have been the targets of multiple attempts to develop novel therapeutics in malignancy.

View Article and Find Full Text PDF

This study examined the effect of partially replacing semi-reinforcing carbon black grade N550 (up to 10 pts. wt.) and fully replacing industrial chalk with natural shungite mineral in industrial formulations of elastomer compositions intended for manufacturing various rubber technical products.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!