halSynteny: a fast, easy-to-use conserved synteny block construction method for multiple whole-genome alignments.

Gigascience

Computer Technologies Laboratory, School of Translational Information Technologies, ITMO University, 49 Kronverkskiy Pr., St. Petersburg 197101, St. Petersburg, Russian Federation.

Published: June 2020

Background: Large-scale sequencing projects provide high-quality full-genome data that can be used for reconstruction of chromosomal exchanges and rearrangements that disrupt conserved syntenic blocks. The highest resolution of cross-species homology can be obtained on the basis of whole-genome, reference-free alignments. Very large multiple alignments of full-genome sequence stored in a binary format demand an accurate and efficient computational approach for synteny block production.

Findings: halSynteny performs efficient processing of pairwise alignment blocks for any pair of genomes in the alignment. The tool is part of the HAL comparative genomics suite and is targeted to build synteny blocks for multi-hundred-way, reference-free vertebrate alignments built with the Cactus system.

Conclusions: halSynteny enables an accurate and rapid identification of synteny in multiple full-genome alignments. The method is implemented in C++11 as a component of the halTools software and released under MIT license. The package is available at https://github.com/ComparativeGenomicsToolkit/hal/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254927PMC
http://dx.doi.org/10.1093/gigascience/giaa047DOI Listing

Publication Analysis

Top Keywords

synteny block
8
alignments
5
halsynteny fast
4
fast easy-to-use
4
easy-to-use conserved
4
synteny
4
conserved synteny
4
block construction
4
construction method
4
method multiple
4

Similar Publications

Genomic investigation of plant secondary metabolism: insights from synteny network analysis of oxidosqualene cyclase flanking genes.

New Phytol

December 2024

State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100, China.

Article Synopsis
  • Researchers are studying the clustered distribution of metabolic genes in plants to understand biosynthetic gene clusters (BGCs) better.
  • By comparing changes in the flanking regions of these genes across various species using synteny neighborhood networks (SNN), they have developed a workflow for analyzing gene relationships.
  • The analysis of oxidosqualene cyclases (OSCs) in 122 plant species revealed conserved positional relationships with certain flanking genes, highlighting evolutionary patterns and variations in gene arrangements across different plant lineages.
View Article and Find Full Text PDF

Organelle genome assembly, annotation, and comparative analyses of two keystone species for wetlands worldwide.

Front Plant Sci

December 2024

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.

is a cosmopolitan aquatic plant genus that includes species with widespread global distributions. In previous studies, a revised molecular phylogeny was inferred using seven plastid loci from nine species across different geographic regions. By utilizing complete organellar genomes, we aim to provide a more comprehensive dataset that offers a robust phylogenetic signal for resolving species evolutionary relationships.

View Article and Find Full Text PDF

Phylogenomics reveals reticulate evolution to be widespread across taxa, but whether reticulation is due to low statistical power or it is a true evolutionary pattern remains a field of study. Here, we investigate the phylogeny and quantify reticulation in the Drosophila saltans species group, a Neotropical clade of the subgenus Sophophora comprising 23 species whose relationships have long been problematic. Phylogenetic analyses revealed conflicting topologies between the X chromosome, autosomes and the mitochondria.

View Article and Find Full Text PDF

Understanding the syntenic relationships among genomes is crucial to elucidate the genomic mechanisms that drive the evolution of species. The nematode Caenorhabditis is a good model for studying genomic evolution due to the well-established biology of Caenorhabditis elegans and the availability of > 50 genomes in the genus. However, effective alignment of more than ten species in Caenorhabditis has not been conducted before, and there is currently no tool to visualize the synteny of more than two species.

View Article and Find Full Text PDF

is an opportunistic pathogen that can infect both humans and animals, of which () being the most significant pathogenic green algae. The incidence of human diseases caused by has been on the rise, yet there is a significant gap in genetic research pertaining to the pathophysiological aspects of these infections. The aim of this study is to present the whole genome data from the clinical isolate InPu-22_FZ strain and to understand its genomic characteristics through comparative genomic analysis and phylogenetic tree analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!