Nanomedicine is an interdisciplinary approach that involves toxicology and other medicinal applications. Gold nanoparticles (AuNPs) may serve as a promising model to address the size and shape-dependent biological response because they show good biocompatibility. This study is to prepare phytosynthesis AuNPs from ten different sp. Among them, the aqueous leaf extract of produced greater efficient and stable AuNPs. The AuNPs were optimised for different physicochemical conditions. Highly stable AuNPs were synthesised at pH 7.0, 37°C, 1.0 ml of leaf extract and 1.0 mM concentration of HAuCl with the particle size of ∼50 nm and these AuNPs were stable up to 12 months. To determine the safety profile of AuNPs , the nanoparticles were injected intravenously into male Wistar albino rats in varying dosages. The authors noticed no significant difference in body weights, haematological and biochemical parameters and the histopathological sections of all vital organs. Highest accumulation was seen in spleen and least in brain. The authors' results show that the AuNPs were biocompatible and did not produce any adverse or abnormalities . The implications of the bioaccumulation of AuNPs need to be further studied to rule out any adverse effects on long-term exposure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8676432PMC
http://dx.doi.org/10.1049/iet-nbt.2019.0116DOI Listing

Publication Analysis

Top Keywords

aunps
9
gold nanoparticles
8
wistar albino
8
leaf extract
8
stable aunps
8
assessment in-vivo
4
in-vivo biocompatibility
4
biocompatibility evaluation
4
evaluation phytogenic
4
phytogenic gold
4

Similar Publications

Drug abuse is a major public problem in the workplace, traffic, and forensic issues, which requires a standardized test device to monitor on-site drug use. For field testing, the most important requirements are portability, sensitivity, non-invasiveness, and quick results. Motivated by this problem, a point of care (POC) test based on lateral flow assay (LFA) was developed for the detection of cocaine (COC) and methamphetamine (MET) in saliva which has been selected as the matrix for this study due to its rapid and non-invasive collection process.

View Article and Find Full Text PDF

A Label-Free Aptasensor for the Detection of Sulfaquinoxaline Using AuNPs and Aptamer in Water Environment.

Biosensors (Basel)

January 2025

Chongqing Key Laboratory of Conservation and Utilization of Freshwater Fishes, Animal Biology Key Laboratory of Chongqing Education Commission of China, College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.

Sulfaquinoxaline (SQX) is widely utilized in aquaculture and animal husbandry due to its broad antimicrobial spectrum and low cost. However, it is difficult to degrade, and there are relevant residues in the aquatic environment, which could be harmful to both the ecological environment and human health. As a new recognition molecule, the aptamer can be recognized with SQX with high affinity and specificity, and the aptamer is no longer adsorbed to AuNPs after binding to SQX, which weakens the catalytic effect of AuNPs.

View Article and Find Full Text PDF

A sandwich electrochemical immunosensor was proposed for the sensitive detection of protective antigen ( PA) toxin based on cadmium sulphide nanocrystals (CdS NCs) and polypyrrole-gold nanoparticle-modified multiwalled carbon nanotubes (PPy-AuNPs/MWCNTs). Herein, PPy-AuNPs/MWCNTs were used as a biocompatible and conducting matrix for immobilization of rabbit anti-PA antibody [RαPA antibody, capturing antibody (Ab1)] and to facilitate excellent electrical conductivity. PPy-AuNPs/MWCNTs were synthesized through a one-step chemical reaction of pyrrole and Au on the surface of MWCNTs.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is a critical signaling molecule with significant roles in various physiological processes in plants. Understanding its regulation through in situ monitoring could offer deeper insights into plant responses and stress mechanisms. In this study, we developed a microneedle electrochemical sensor to monitor HO in situ, offering deeper insights into plant stress responses.

View Article and Find Full Text PDF

Nanoplastics, emerging as pervasive environmental pollutants, pose significant threats to ecosystems and human health due to their small size and potential toxicity. However, detecting trace levels of nanoplastics remains challenging because of limitations in the current analytical methods. Herein, we propose a method that combines superhydrophobic enrichment with SERS analysis for detecting trace nanoplastics in aqueous environments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!