2D materials beyond graphene toward Si integrated infrared optoelectronic devices.

Nanoscale

State Key Laboratory of Electronic Thin Films and Integrated Devices, and School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.

Published: June 2020

Since the discovery of graphene in 2004, it has become a worldwide hot topic due to its fascinating properties. However, the zero band gap and weak light absorption of graphene strictly restrict its applications in optoelectronic devices. In this regard, semiconducting two-dimensional (2D) materials are thought to be promising candidates for next-generation optoelectronic devices. Infrared (IR) light has gained intensive attention due to its vast applications, including night vision, remote sensing, target acquisition, optical communication, etc. Consequently, the generation, modulation, and detection of IR light are crucial for practical applications. Due to the van der Waals interaction between 2D materials and Si, the lattice mismatch of 2D materials and Si can be neglected; consequently, the integration process can be achieved easily. Herein, we review the recent progress of semiconducting 2D materials in IR optoelectronic devices. Firstly, we introduce the background and motivation of the review. Then, the suitable materials for IR applications are presented, followed by a comprehensive review of the applications of 2D materials in light emitting devices, optical modulators, and photodetectors. Finally, the problems encountered and further developments are summarized. We believe that milestone investigations of IR optoelectronics based on 2D materials beyond graphene will emerge soon, which will bring about great industrial revelations in 2D material-based integrated nanodevice commercialization.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr02574gDOI Listing

Publication Analysis

Top Keywords

optoelectronic devices
16
materials
8
materials graphene
8
devices
5
applications
5
graphene integrated
4
integrated infrared
4
optoelectronic
4
infrared optoelectronic
4
devices discovery
4

Similar Publications

Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature.

View Article and Find Full Text PDF

Corrigendum to "Extended homogeneous field correction method based on oblique projection in OPM-MEG" [NeuroImage 306(2025) 120991].

Neuroimage

January 2025

Key Laboratory of Ultra-Weak Magnetic Field Measurement Technology, Ministry of Education, School of Instrumentation and Optoelectronic Engineering, Beihang University, 100191, Beijing, China; Hangzhou Institute of Extremely-Weak Magnetic Field Major National Science and Technology Infrastructure, Hangzhou, 310051, China; State Key Laboratory of Traditional Chinese Medicine Syndrome/Health Construction Center, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Hefei National Laboratory, Hefei, 230088, China. Electronic address:

View Article and Find Full Text PDF

A novel separated OPECT aptasensor based on MOF-derived BiVO/BiS type-II heterojunction for rapid detection of bacterial quorum sensing signal molecules.

Talanta

January 2025

Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, Marine Bioresource and Environment Research Center, First Institute of Oceanography, Ministry of Natural Resources, No. 6 Xianxialing Road, Qingdao, 266061, PR China. Electronic address:

Quorum sensing signal molecules released by microorganisms serve as critical biomarkers regulating the attachment and aggregation of marine microbes on engineered surfaces. Hence, the development of efficient and convenient methods for detecting quorum sensing signal molecules is crucial for monitoring and controlling the formation and development of marine biofouling. Advanced optoelectronic technologies offer increased opportunities and methods for detecting quorum sensing signal molecules, thereby enhancing the accuracy and efficiency of detection.

View Article and Find Full Text PDF

Two-dimensional Transition Metal Dichalcogenides (2D TMDs) have garnered significant attention in the field of materials science due to their remarkable electronic and optoelectronic properties, including high carrier mobility and tunable band gaps. Despite the extensive research on various TMDs, there remains a notable gap in understanding the synthesis techniques and their implications for the practical application of monolayer tungsten disulfide (WS2) in optoelectronic devices. This gap is critical, as the successful integration of WS2 into commercial technologies hinges on the development of reliable synthesis methods that ensure high quality and uniformity of the material.

View Article and Find Full Text PDF

UV-Resistant Nanostructured Anti-reflective Film for Achieving Efficiency Enhancement of Perovskite Solar Cells and Potential of Fabricating Large-Scale Cu(In, Ga)Se Solar Cells.

ACS Appl Mater Interfaces

January 2025

Guangxi Key Laboratory of Optical and Electronic Material and Devices, School of Materials Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Guilin, Guangxi 541004, China.

Sticker-type transparent antireflective film (STAF) is applied to perovskite solar cells (PSCs) to reduce the reflection and improve the light-trapping ability of PSCs. However, the development of STAF is hindered by many factors, such as expensive materials, low actual service life, unsatisfactory antireflective effect, and a lack of research on stability. This work proposes an ultraviolet (UV)-resistant enhanced sticker-type nanostructure acrylic resin antireflective film (SNAAF), which is applied to the incident surface of PSCs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!