A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Autophagy Suppresses Toll-Like Receptor 3-Mediated Inflammatory Reaction in Human Epidermal Keratinocytes. | LitMetric

Autophagy, one mechanism of programmed cell death, is fundamental to cellular homeostasis. Previous studies have identified autophagy as a novel mechanism by which cytokines control the immune response. However, its precise role in immune-related inflammatory skin diseases such as psoriasis remains unclear. Thus, this study explored the functional role of autophagy in psoriatic inflammation of epidermal keratinocytes. Strong light chain 3 immunoreactivity was observed in epidermal keratinocytes of both human psoriatic lesions and imiquimod-induced mice psoriatic model, and it was readily induced by polycytidylic acid (poly (I:C)), which stimulates Toll-like receptor 3 (TLR3), in human epidermal keratinocytes in vitro. Rapamycin-induced activation of autophagy significantly reduced poly (I:C)-induced inflammatory reaction, whereas, inhibition of autophagy by 3-methyladeine increased that. Our results indicate that the induction of autophagy may attenuate TLR3-mediated immune responses in human epidermal keratinocytes, thus providing novel insights into the mechanisms underlying the development of inflammatory skin diseases including psoriasis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7222544PMC
http://dx.doi.org/10.1155/2020/4584626DOI Listing

Publication Analysis

Top Keywords

epidermal keratinocytes
20
human epidermal
12
toll-like receptor
8
inflammatory reaction
8
inflammatory skin
8
skin diseases
8
autophagy
7
epidermal
5
keratinocytes
5
autophagy suppresses
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!