Background: Recently, a large-scale novel coronavirus pneumonia (NCP) outbreak swept China. As of Feb. 9, 2020, a total of 40,260 patients have been diagnosed with NCP, and 23,589 patients were suspected to have infected by the 2019 novel coronavirus (COVID-19), which puts forward a great challenge for public health and clinical treatment in China. Until now, we are in the high-incidence season of NCP. Thus, the analysis of the transmissibility change of NCP and its potential factors may provide a reliable reference for establishing effective prevention and control strategies.
Method: By means of the method of calculating the instantaneous basic reproduction number proposed by Cori et al. (2013), we use to describe the transmissibility change of COVID-19 in China, 2019-2020. In addition, the Baidu Index (BDI) and Baidu Migration Scale (BMS) were selected to measure the public awareness and the effect of Wuhan lockdown (restricted persons in Wuhan outflow from the epidemic area) strategy, respectively. The Granger causality test (GCT) was carried out to explore the association between public awareness, the effect of the Wuhan lockdown strategy, and the transmissibility of COVID-19.
Results: The estimated averaged basic reproduction number of NCP in China was 3.44 with 95% CI (2.87, 4.0) during Dec. 8, 2019, to Feb. 9, 2020. The instantaneous basic reproduction numbers ( ) have two waves and reaching peaks on Jan. 8 and Jan. 27, respectively. After reaching a peak on Jan. 27, showed a continuous decline trend. On Feb. 9, has fallen to 1.68 (95% CI: 1.66, 1.7), but it is still larger than 1. We find a significantly negative association between public awareness and the transmissibility change of COVID-19, with one unit increase in cumulative BDI leading to a decrease of 0.0295% (95% CI: 0.0077, 0.051) . We also find a significantly negative association between the effect of the Wuhan lockdown strategy and the transmissibility change of COVID-19, and a one unit decrease in BMS may lead to a drop of 2.7% (95% CI: 0.382, 4.97) .
Conclusion: The current prevention and control measures have effectively reduced the transmissibility of COVID-19; however, is still larger than the threshold 1. The results show that the government adopting the Wuhan lockdown strategy plays an important role in restricting the potential infected persons in Wuhan outflow from the epidemic area and avoiding a nationwide spread by quickly controlling the potential infection in Wuhan. Meanwhile, since Jan. 18, 2020, the people successively accessed COVID-19-related information via the Internet, which may help to effectively implement the government's prevention and control strategy and contribute to reducing the transmissibility of NCP. Therefore, ongoing travel restriction and public health awareness remain essential to provide a foundation for controlling the outbreak of COVID-19.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7235687 | PMC |
http://dx.doi.org/10.1155/2020/3842470 | DOI Listing |
Vaccines (Basel)
December 2024
Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China.
The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol) methacrylate--hexyl methacrylate)--poly(butyl methacrylate--dimethylaminoethyl methacrylate--propyl acrylate) (p(PEGMA--HMA)--p(BMA--DMAEMA--PAA)), via reversible addition-fragmentation chain transfer polymerization.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Institute of High Pressure Physics, Polish Academy of Sciences, Sokolowska 29/37, 01-142 Warsaw, Poland.
In situ X-ray reciprocal space mapping was performed during the interval heating and cooling of InGaN/GaN quantum wells (QWs) grown via metal-organic vapor phase epitaxy (MOVPE). Our detailed in situ X-ray analysis enabled us to track changes in the peak intensities and radial and angular broadenings of the reflection. By simulating the radial diffraction profiles recorded during the thermal cycle treatment, we demonstrate the presence of indium concentration distributions (ICDs) in the different QWs of the heterostructure (1.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Department of Physical Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.
We present a versatile method for synthesizing high-quality molybdenum disulfide (MoS) crystals on graphite foil edges via chemical vapor deposition (CVD). This results in MoS/graphene heterostructures with precise epitaxial layers and no rotational misalignment, eliminating the need for transfer processes and reducing contamination. Utilizing in situ transmission electron microscopy (TEM) equipped with a nano-manipulator and tungsten probe, we mechanically induce the folding, wrinkling, and tearing of freestanding MoS crystals, enabling the real-time observation of structural changes at high temporal and spatial resolutions.
View Article and Find Full Text PDFJ Funct Biomater
December 2024
Department of Orthodontics, School of Dentistry, Kyungpook National University, Daegu 41940, Republic of Korea.
The current study aimed to quantify the length progression of enamel microcracks (EMCs) after debonding metal and ceramic brackets, implementing OCT as a diagnostic tool. The secondary objectives included a three-dimensional assessment of EMC width and depth and the formation of new EMCs. OCT imaging was performed on 16 extracted human premolars before bonding and after debonding.
View Article and Find Full Text PDFEntropy (Basel)
January 2025
School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China.
With the increasing importance of securing images during network transmission, this paper introduces a novel image encryption algorithm that integrates a 3D chaotic system with V-shaped scrambling techniques. The proposed method begins by constructing a unique 3D chaotic system to generate chaotic sequences for encryption. These sequences determine a random starting point for V-shaped scrambling, which facilitates the transformation of image pixels into quaternary numbers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!