Increasing incidence of antibiotic resistance necessitates the development of more potent antibiotics. The aim of this work was to evaluate the antibacterial activity of L. barks as an alternative agent for resistant pathogenic bacteria. The barks were extracted with ethanol, followed by partition of the extract to give -hexane, ethyl acetate and water fractions. An antibacterial assay was conducted to evaluate inhibitory activity of the extract and fractions against and . An antibacterial activity was examined using -infected mouse models, in which the colony number of were counted from the infected rats' feces. Assesment on safety of the extract was conducted by a subchronic toxicity test which mainly examined alteration occured in biochemical parameters and hystopatological conditions of livers and kidneys. The results showed that the ethanol extract inhibited the growth of both and with the MIC of 0.3125% w/v, and the ethyl acetate fraction with the MIC of 0.625% b/v. In the antibacterial assay, the extract at three doses decreased the colony number of significantly, and after the fourth to sixth days, the precentage of decrease reached more than 90% by 1000 mg/kg dose. The subchronic toxicity test revealed that after the extract exposured for 90 days, a dose of 1000 mg/kg induced liver and kidney damages histologically, however, it returned to normal condition after 30 days of recovery. The results of this study indicated that the extract of L. barks had potent antibacterial activity against as sample of resistant bacteria, and is safe to be used as a herbal medicine, preferably at a dose lower than 1000 mg/kg.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7240208PMC
http://dx.doi.org/10.1016/j.toxrep.2020.04.013DOI Listing

Publication Analysis

Top Keywords

antibacterial activity
16
subchronic toxicity
12
ethyl acetate
8
fractions antibacterial
8
antibacterial assay
8
colony number
8
toxicity test
8
extract
7
antibacterial
6
activity subchronic
4

Similar Publications

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

The emergence of multidrug-resistant (MDR) pathogens, coupled with the limited effectiveness of existing antibiotics in eradicating biofilms, presents a significant threat to global health care. This critical situation underscores the urgent need for the discovery and development of antimicrobial agents. Recently, peptide-derived antimicrobial nanomaterials have shown promise in combating such infections.

View Article and Find Full Text PDF

Characterization and genomic insights into bacteriophages Kpph1 and Kpph9 against hypervirulent carbapenem-resistant .

Virulence

December 2025

Jiangxi Institute of Respiratory Disease, Jiangxi Clinical Research Center for Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, P.R. China.

The increasing incidence of infections attributed to hypervirulent carbapenem-resistant (Hv-CRKp) is of considerable concern. Bacteriophages, also known as phages, are viruses that specifically infect bacteria; thus, phage-based therapies offer promising alternatives to antibiotic treatments targeting Hv-CRKp infections. In this study, two isolated bacteriophages, Kpph1 and Kpph9, were characterized for their specificity against the Hv-CRKp NUHL30457 strain that possesses a K2 capsule serotype.

View Article and Find Full Text PDF

Seven-membered nitrogen-containing heterocycles, particularly azepine-based compounds, represent an intriguing class of molecules with vast arrays of applications. These compounds have garnered considerable attention in synthetic and medicinal chemistry due to their non-planar, non-aromatic features, which offer structural flexibility and diversity to design new drugs with improved pharmacological properties. This review summarizes the recent advances in the synthesis of azepine derivatives, including eco-friendly methodologies that align with the principles of green chemistry, which emphasize atom economy, sustainability, and waste reduction.

View Article and Find Full Text PDF

Fine particulate matter (PM2.5) is known to exacerbate chronic respiratory disorders, primarily by inducing inflammatory responses and mucus overproduction. Perilla leaves are reported to have significant health benefits, such as antioxidant, antibacterial, and antiallergic properties, attributed to phenolic compounds that vary depending on genetic diversity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!