The empirical relationship between total phosphorus and chlorophyll has guided lake management decisions for decades, but imprecision in this relationship in individual lakes limits the utility of these models. Many environmental factors that potentially affect the total phosphorus-chlorophyll relationship have been studied, but here we hypothesize that imprecision can be reduced by considering differences in the proportions of phosphorus bound to three different "compartments" in the water column: phosphorus bound in phytoplankton, phosphorus bound to suspended sediment that is not associated with phytoplankton, and dissolved phosphorus. We specify a hierarchical Bayesian network model that estimates phosphorus associated with each compartment using field measurements of chlorophyll, total suspended solids, and total phosphorus collected from reservoirs in Missouri, USA. We then demonstrate that accounting for these different compartments yields accurate predictions of total phosphorus in individual lakes. Results from this model also yield insights into the mechanisms by which lake morphometric and watershed characteristics affect observed relationships between total phosphorus and chlorophyll.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7252496 | PMC |
http://dx.doi.org/10.1002/lno.11422 | DOI Listing |
Inorg Chem
January 2025
State Key Laboratory of Molecular & Process Engineering, SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China.
The ZSM-5 zeolite is the key active component in high-severity fluid catalytic cracking (FCC) catalysts and is routinely activated by phosphorus compounds in industrial production. To date, however, the detailed structure and function of the introduced phosphorus still remain ambiguous, which hampers the rational design of highly efficient catalysts. In this work, using advanced solid-state NMR techniques, we have quantitatively identified a total of seven types of P-containing complexes in P-modified ZSM-5 zeolite and clearly revealed their structure, location, and catalytic role.
View Article and Find Full Text PDFBiotechnol Notes
December 2024
Department of Chemical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia.
This study investigates the potential of phototrophic microalgae, specifically Chlorella protothecoides, for biological wastewater treatment, with a focus on the effects of air temperature and CO concentration on nutrient removal from tertiary municipal wastewater. Utilizing both the Monod and Arrhenius kinetic models, the research examines how temperature and nutrient availability influence microalgal growth and nutrient removal. The study finds that optimal biomass productivity occurs at 25 °C, with growth slowing at higher temperatures (30 °C, 40 °C, and 45 °C).
View Article and Find Full Text PDFRen Fail
December 2025
State Key Laboratory of Traditional Chinese Medicine Syndrome, The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
Background: While there are numerous benefits to tea consumption, its long-term impact on patients with chronic kidney disease (CKD) remains unclear.
Method: Our analysis included 17,575 individuals with CKD from an initial 45,019 participants in the National Health and Nutrition Examination Survey (NHANES) (1999-2018). Individuals with extreme dietary habits, pregnancy, or non-CKD conditions were excluded.
J Environ Manage
January 2025
College of Resources and environmental Sciences, Gansu Agricultural University, Lanzhou, 730070, China. Electronic address:
Limestone mining in arid regions, particularly within fragile environments, leads to severe environmental pollution and ecological degradation. Developing a scientifically sound and effective ecological rehabilitation strategy is therefore critical. This study constructed a three-dimensional ecological rehabilitation model integrating soil amelioration and vegetation reconstruction.
View Article and Find Full Text PDFSoil nutrients and meteorological conditions are pivotal environmental factors influencing plant growth and development. This study systematically analyzes how soil nutrients and meteorological factors influence the phenotypic growth and seed production of wild Elymus nutans in Tibet. These environmental factors are critical ecological determinants, and this research seeks to unveil the complex and diverse ecological adaptation mechanisms of the species.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!