The effects of donor-derived natural killer (NK) cell alloreactivity on disease relapse and transplant-related mortality following allogeneic stem cell transplantation have been described while the impact of recipient-derived NK cell alloreactivity on donor engraftment is not well known. Epitopes of HLA Class I molecules act as ligands for NK cell killer immunoglobulin-like receptors (KIR) regulating their cytotoxicity. As such, NK cell alloreactivity is predictable from KIR ligand mismatches between donors and recipients. We analyzed the impact of KIR ligand mismatch (KIR-L-MM) on donor engraftment in 70 cord blood transplants (CBT) and 26 haploidentical transplants (HaploSCT). In CBT, host-versus-graft-directed KIR-L-MM predicted primary graft failure; an effect not mitigated by use of ATG. This trend was most significant with HLA-C KIR-L-MM. In addition, graft-versus-host-directed KIR-L-MM predicted the dominant cord blood unit in double CBT. In the limited HaploSCT cohort, host-versus-graft-directed KIR-L-MM did not predict graft failure. Time to neutrophil engraftment was unaffected by KIR-L-MM in either CBT or HaploSCT. The direction of KIR-L mismatch may be a parameter to consider when selecting CBT units to ensure successful engraftment. The role of KIR-L-MM in CBT and HaploSCT engraftment merits further exploration in a large transplant database.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7685980PMC
http://dx.doi.org/10.1038/s41409-020-0957-7DOI Listing

Publication Analysis

Top Keywords

kir ligand
12
cell alloreactivity
12
impact kir
8
ligand mismatch
8
stem cell
8
cell transplantation
8
donor engraftment
8
cord blood
8
host-versus-graft-directed kir-l-mm
8
kir-l-mm predicted
8

Similar Publications

Donor C1 Group KIR-ligand inferiority is linked to increased mortality in haploidentical hematopoietic stem cell transplantation with post-transplant cyclophosphamide.

Cytotherapy

December 2024

Department of Internal Medicine I: Hematology with Stem Cell Transplantation, Hemostaseology and Medical Oncology, Ordensklinikum Linz-Elisabethinen, Linz, Austria; Medical Faculty, Johannes Kepler University, Linz, Austria.

Background Aims: In HLA-identical hematopoietic stem cell transplantation (HSCT), HLA-C1 group killer cell immunoglobulin-like receptor (KIR) ligands have been linked to graft-versus-host disease, whereas C2 homozygosity was associated with increased relapses. The differential impact of the recipients versus the donor's HLA-C KIR ligands cannot be determined in HLA-identical HSCT but may be elucidated in the haploidentical setting, in which HLA-C (including the HLA-C KIR ligand group) mismatching is frequently present.

Methods: We retrospectively investigated the effect of recipient versus donor C1 ligand content on survival and complications in post-transplant cyclophosphamide (PTCy)-based haploidentical HSCT (n = 170).

View Article and Find Full Text PDF

Natural killer (NK) cells are essential elements of the innate immune response against tumors and viral infections. NK cell activation is governed by NK cell receptors that recognize both cellular (self) and viral (non-self) ligands, including MHC, MHC-related, and non-MHC molecules. These diverse receptors belong to two distinct structural families, the C-type lectin superfamily and the immunoglobulin superfamily.

View Article and Find Full Text PDF

Introduction: Posttransplant cyclophosphamide (PTCy) has revolutionized the landscape of human leukocyte antigen (HLA)-haploidentical hematopoietic cell transplantation (haplo-HCT), providing a pivotal therapeutic option for patients with hematological malignancies who lack an HLA-matched donor.

Methods: In this retrospective analysis involving 54 adult patients undergoing PTCy-based haplo-HCT, we evaluated the impact of inhibitory killer immunoglobulin-like receptor (KIR)/HLA mismatch, alongside patient, donor, and transplant factors, on clinical outcomes within a homogeneous cohort characterized by a myeloablative conditioning regimen and bone marrow graft.

Results: With a median follow-up of 73.

View Article and Find Full Text PDF

Pluripotent stem cells provide opportunities for treating injuries and previously incurable diseases. A major concern is the immunogenicity of stem cells and their progeny. Here, we have dissected the molecular mechanisms that allow natural killer (NK) cells to respond to human pluripotent stem cells, investigating a wide selection of activating and inhibitory NK cell receptors and their ligands.

View Article and Find Full Text PDF

The magnitude of the natural killer (NK) cell response contributes to the achievement of treatment-free remission (TFR) in patients with chronic myeloid leukemia (CML) and is regulated by the interaction between killer immunoglobulin-like receptors (KIRs) on NK cells and human leukocyte antigen (HLA) class I molecules on target cells. The abundant combination between and through genetic polymorphisms determines the functional diversity of NK cells. We previously reported that status is associated with achievement of TFR by reflecting NK cell potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!