Background: Nonalcoholic fatty liver disease (NAFLD) is a multisystem disease that affects the liver and a variety of extra-hepatic organ systems. This study aimed to investigate the relationship between hepatic steatosis and glucose metabolism in liver and extra-hepatic tissues and organs.

Methods: The whole body F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) images of 191 asymptomatic tumor screening patients were retrospectively analyzed. Patients with the ratio of spleen/liver CT densities > 1.1 were defined to have NAFLD, and their clinical symptoms, laboratory markers, FDG uptake in a variety of tissues and organs including heart, mediastinal blood pool, liver, spleen, pancreas, and skeletal muscle, as well as abdominal adipose tissue volumes including visceral adipose tissue (VAT) volume and subcutaneous adipose tissue (SAT) volume were compared with those of the non-NAFLD patients and used to analyze the independent correlation factors of NAFLD.

Results: Among the 191 patients, 33 (17.3%) were NAFLD, and 158 (82.7%) were non-NAFLD. There was no significant correlation between the mean standardized uptake value (SUVmean) and CT density of liver as well as the ratio of spleen/liver CT densities. Hepatic steatosis, but not FDG intake, was more significant in NAFLD patients with abnormal liver function than those with normal liver function. Compared with the non-NAFLD patients, NAFLD patients had significantly reduced myocardial glucose metabolism, but significantly increased mediastinal blood pool, spleen SUVmean and abdominal adipose tissue volumes (including VAT and SAT volumes) (P < 0.05). Multivariate regression analysis showed that elevated serum ALT, increased abdominal VAT volume, and decreased myocardial FDG uptake were independent correlation factors for NAFLD. Further studies showed that hepatic steatosis and myocardial FDG uptake were mildly linearly correlated (r = 0.366 with hepatic CT density and - 0.236 with the ratio of spleen/liver CT densities, P < 0.05).

Conclusions: NAFLD is a systemic disease that can lead to the change of glucose metabolism in some extra-hepatic tissues and organs, especially the myocardium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7254706PMC
http://dx.doi.org/10.1186/s12902-020-00556-xDOI Listing

Publication Analysis

Top Keywords

adipose tissue
16
hepatic steatosis
12
myocardial glucose
8
glucose metabolism
8
ratio spleen/liver
8
spleen/liver densities
8
mediastinal blood
8
blood pool
8
abdominal adipose
8
tissue volumes
8

Similar Publications

Intestinal barrier damage causes an imbalance in the intestinal flora and microbial environment, promoting a variety of gastrointestinal diseases. This study aimed to explore the mechanism by which adipose-derived stem cells (ADSCs) repair intestinal barrier damage. The human colon adenocarcinoma cell line Caco-2 and rats were treated with lipopolysaccharide (LPS) to establish in vitro and in vivo models, respectively, of intestinal barrier damage.

View Article and Find Full Text PDF

Stromal vascular fraction (SVF) is a heterogeneous collection of cells obtained from adipose tissue through lipoaspiration and is an alter-native intraarticular treatment option, especially in osteoarthritis (OA). The anti-inflammatory and extracellular tissue repair-stimulating properties of SVF increase its effectiveness in regeneration and repair mechanisms. One of the most common symptoms of hemophilia A and B is hemophilic arthropathy (HA).

View Article and Find Full Text PDF

Evaluation of the Effect of Exosomes From Adipose Derived Stem Cells on Changes in GSH/ROS Levels During Skin Photoaging.

Photodermatol Photoimmunol Photomed

January 2025

Center of Burn & Plastic and Wound Healing Surgery, Hengyang Medical School, the First Affiliated Hospital, University of South China, Hengyang, China.

Objective: Exosomes (Exos) from adipose derived stem cells (ADSCs) can delay skin photoaging, but their effects on reactive oxygen species (ROS) remains unclear. This study aimed to investigate the relationship between adipose derived stem cell exosomes (ADSCs-Exos) in anti-photoaging of skin and glutathione (GSH)/ ROS expression in human fibroblasts.

Methods: A skin photoaging model was established by irradiating human fibroblasts with ultraviolet B (UVB) light in vitro.

View Article and Find Full Text PDF

Lifestyle-related diseases, such as atherosclerosis and diabetes, are now considered to be a series of diseases caused by chronic inflammation. Adipose tissue is considered to be an endocrine organ that not only plays a role in lipid storage, heat production, and buffering, but also produces physiologically active substances and is involved in chronic inflammation. Perivascular adipose tissue (PVAT) surrounding blood vessels similarly produces inflammatory and anti-inflammatory physiologically active substances that act on blood vessels either directly or via the bloodstream.

View Article and Find Full Text PDF

Introduction: Systemic administration of induced pluripotent stem cell-derived mesenchymal stem cells (iPS-MSCs) has a therapeutic effect on myocardial ischemia. However, the therapeutic mechanism underlying systemic iPS-MSC-based therapy for ischemic cardiomyopathy (ICM) remains unclear. We investigated the therapeutic effects of iPS-MSCs through extracellular vesicle (EV)-mediated tissue repair in a rat model of ICM.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!