Background: Utilization of heterosis has greatly improved the productivity of many crops worldwide. Understanding the potential molecular mechanism about how hybridization produces superior yield in upland cotton is critical for efficient breeding programs.

Results: In this study, high, medium, and low hybrids varying in the level of yield heterosis were screened based on field experimentation of different years and locations. Phenotypically, high hybrid produced a mean of 14% more seed cotton yield than its better parent. Whole-genome RNA sequencing of these hybrids and their four inbred parents was performed using different tissues of the squaring stage. Comparative transcriptomic differences in each hybrid parent triad revealed a higher percentage of differentially expressed genes (DEGs) in each tissue. Expression level dominance analysis identified majority of hybrids DEGs were biased towards parent like expressions. An array of DEGs involved in ATP and protein binding, membrane, cell wall, mitochondrion, and protein phosphorylation had more functional annotations in hybrids. Sugar metabolic and plant hormone signal transduction pathways were most enriched in each hybrid. Further, these two pathways had most mapped DEGs on known seed cotton yield QTLs. Integration of transcriptome, QTLs, and gene co-expression network analysis discovered genes Gh_A03G1024, Gh_D08G1440, Gh_A08G2210, Gh_A12G2183, Gh_D07G1312, Gh_D08G1467, Gh_A03G0889, Gh_A08G2199, and Gh_D05G0202 displayed a complex regulatory network of many interconnected genes. qRT-PCR of these DEGs was performed to ensure the accuracy of RNA-Seq data.

Conclusions: Through genome-wide comparative transcriptome analysis, the current study identified nine key genes and pathways associated with biological process of yield heterosis in upland cotton. Our results and data resources provide novel insights and will be useful for dissecting the molecular mechanism of yield heterosis in cotton.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7251818PMC
http://dx.doi.org/10.1186/s12870-020-02442-zDOI Listing

Publication Analysis

Top Keywords

yield heterosis
16
upland cotton
12
comparative transcriptome
8
transcriptome analysis
8
heterosis upland
8
molecular mechanism
8
seed cotton
8
cotton yield
8
yield
7
cotton
6

Similar Publications

The MYB61-STRONG2 module regulates culm diameter and lodging resistance in rice.

J Integr Plant Biol

January 2025

Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Lodging reduces grain yield and quality in cereal crops. Lodging resistance is affected by the strength of the culm, which is influenced by the culm diameter, culm wall thickness, and cell wall composition. To explore the genetic architecture of culm diameter in rice (Oryza sativa), we conducted a genome-wide association study (GWAS).

View Article and Find Full Text PDF

TaDL interacts with TaB3 and TaNF-YB1 to synergistically regulate the starch synthesis and grain quality in bread wheat.

J Integr Plant Biol

December 2024

Frontiers Science Center for Molecular Design Breeding (MOE), Key Laboratory of Crop Heterosis and Utilization (MOE) and Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.

Starch biosynthesis is a critical factor in wheat (Triticum aestivum L.) quality and yield. However, the full scope of its regulation is not fully understood.

View Article and Find Full Text PDF

Combining two main functional alleles can increase rice yield.

Front Plant Sci

December 2024

Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees of the Ministry of Education, Central South University of Forestry and Technology, Changsha, China.

() is one of the key genes in regulating photosynthesis and plant architecture. As the antagonistic effects of have concurrent impacts on photosynthesis and yield component traits, how we can effectively utilize the gene to further increase rice yield is not clear. In this study, we used two different main functional alleles, each of which has previously been proven to have specifically advantageous traits, and tested whether the combined alleles have a higher yield than the homozygous alleles.

View Article and Find Full Text PDF

Background: Orange maize genotypes are sources of provitamin A (PVA) carotenoids, which are precursors of vitamin A. PVA deficiency and drought constitute major challenges causing increasing food and nutritional insecurity in sub-Saharan Africa (SSA). Breeding of drought-tolerant provitamin A hybrid maize can mitigate these challenges.

View Article and Find Full Text PDF

Can a Hybrid Line Break a Selection Limit on Behavioral Evolution in Mice?

Behav Genet

December 2024

Department of Evolution, Ecology, and Organismal Biology, University of California, Riverside, CA, USA.

Artificial selection yielded four replicate high runner (HR) lines of mice that reached apparent selection limits (~ threefold increase in wheel revolutions per day vs. four control lines), despite maintenance of additive genetic variance. After 68 generations, we used animal models to test for changes in additive-genetic variances and covariance of the two measured components (average speed and duration) of running distance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!