Adipose-derived stem/stromal cells (ASCs) have been previously used for bone repair. However, significant cell heterogeneity exists within the ASC population, which has the potential to result in unreliable bone tissue formation and/or low efficacy. Although the use of cell sorting to lower cell heterogeneity is one method to improve bone formation, this is a technically sophisticated and costly process. In this study, we tried to find a simpler and more deployable solution-blocking antiosteogenic molecule Dickkopf-1 (DKK1) to improve osteogenic differentiation. Human adipose-derived stem cells were derived from = 5 samples of human lipoaspirate. In vitro, anti-DKK1 treatment, but not anti-sclerostin (SOST), promoted ASC osteogenic differentiation, assessed by alizarin red staining and real-time polymerase chain reaction (qPCR). Increased canonical Wnt signaling was confirmed after anti-DKK1 treatment. Expression levels of peaked during early osteogenic differentiation (day 3). Concordantly, anti-DKK1 supplemented early (day 3 or before), but not later (day 7) during osteogenic differentiation positively regulated osteoblast formation. Finally, anti-DKK1 led to increased transcript abundance of the Wnt inhibitor SOST, potentially representing a compensatory cellular mechanism. In sum, DKK1 represents a targetable "molecular brake" on the osteogenic differentiation of human ASC. Moreover, release of this brake by neutralizing anti-DKK1 antibody treatment at least partially rescues the poor bone-forming efficacy of ASC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7410293 | PMC |
http://dx.doi.org/10.1089/scd.2020.0070 | DOI Listing |
Calcif Tissue Int
January 2025
Musculoskeletal Disease Center (151), Jerry L. Pettis Memorial VA Medical Center, VA Loma Linda Healthcare System, 11201 Benton Street, Loma Linda, CA, 92357, USA.
This study assessed the novel concept that osteoclast-derived Grem1 has regulatory functions in the skeletal response to calcium stress using an osteoclastic Grem1 conditional knockout (cKO) mouse model. The calcium stress was initiated by feeding cKO mutants and wildtype (WT) littermates a calcium-deficient diet for 2 weeks. Deletion of Grem1 in mature osteoclasts did not affect developmental bone growth nor basal bone turnover.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China; GWDC Kunshan Company, Kunshan 215337, China; Jingkun Chemistry Company, Kunshan 215337, China. Electronic address:
Natural extracellular matrices (ECM) provide a more accurate simulation of the cellular growth environment, making them excellent substrate materials for in vitro cell culture. The porcine small intestinal submucosa (SIS) is one of the most widely used natural ECM that display superior bioactivity. However, decellularization operations often result in fiber breakage and failure to recover mechanical strength in the SIS.
View Article and Find Full Text PDFTissue Cell
January 2025
Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
Mechanical loading plays a pivotal role in regulating bone anabolic processes. Understanding the optimal mechanical loading parameters for cellular responses is critical for advancing strategies in orthopedic bioreactor-based bone tissue engineering. This study developed a poly (sorbitol sebacate) (PSS) filmscaffold with a sorbitol-to-sebacic acid molar ratio of 1:4.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2024
College of Chemical Engineering, Xinjiang Normal University, 102 Xinyi Road, Urumqi 830054, P.R. China. Electronic address:
Infection and insufficient osseointegration are the primary factors leading to the failure of titanium-based implants. Surface coating modifications that combine both antibacterial and osteogenic properties are commonly employed strategies. However, the challenge of achieving rapid antibacterial action and consistent osteogenesis with these coatings remains unresolved.
View Article and Find Full Text PDFBiomed Mater
January 2025
Biomechanics Research Centre (BMEC), School of Engineering, University of Galway, University Road, Galway, H91 TK33, IRELAND.
Bioabsorbable textile scaffolds are promising for bone tissue engineering applications. Their tuneable, porous, fibre based architecture resembles that of native extracellular matrix, and they can sustain tissue growth while being gradually absorbed in the body. In this work, immortalized mouse calvaria preosteoblast MC3T3-E1 cells were cultured in vitro on two warp-knitted bioabsorbable spacer fabric scaffolds made of poly(lactic acid) (PLA) and poly-4-hydroxybutyrate (P4HB), to investigate their osteogenic properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!