The free and protein-bound amino acid composition of the herb and roots of Smallanthus sonchifolius was analyzed by HPLC method. Fourteen free and fifteen protein-bound amino acids were determined in yacon herb, and three free and fourteen protein-bound amino acids in the roots. Among the free amino acids, proline (0.44 µg/mg) and aspartic acid (0.12 µg/mg) were dominant in the herb and proline (0.28 µg/mg) in the roots. Among the protein-bound amino acids, aspartic acid (18.58 µg/mg), glutamic acid (16.33 µg/mg) and proline (14.52 µg/mg) prevailed in the herb, and proline (3.14 μg/mg) in the roots. Fructose, sucrose and arabinose were identified in free form in the herb of S. sonchifolius applying gas chromatography-mass spectrometry (GC-MS). The polysaccharide complex was obtained from yacon herb, its yield was 5.13 ± 0.09%. Fructose (3.11 µg/mg) was the only monosaccharide identified in the hydrolysate of the obtained complex.

Download full-text PDF

Source

Publication Analysis

Top Keywords

protein-bound amino
16
amino acids
16
amino acid
8
composition herb
8
herb roots
8
roots smallanthus
8
smallanthus sonchifolius
8
yacon herb
8
aspartic acid
8
herb proline
8

Similar Publications

High-Throughput Protein-Bound Amino Acid Quantification from Maize Kernels.

Cold Spring Harb Protoc

December 2024

Christopher S. Bond Life Sciences Center, Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA

In cereal crops, seed quality is determined by the composition and levels of protein-bound amino acids, which account for ∼90% of the seed total amino acid content. In maize particularly, seed quality is affected by the low levels of lysine and tryptophan, two amino acids that humans and animals cannot synthesize and must obtain from the diet. The low levels of these two amino acids in seeds is due to the dominance of seed storage proteins, namely zeins, which are deficient in these two amino acids.

View Article and Find Full Text PDF

High-Throughput Free Amino Acid Quantification from Maize Tissues.

Cold Spring Harb Protoc

December 2024

Christopher S. Bond Life Sciences Center, Division of Biological Sciences, Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri 65211, USA

Amino acids in maize can exist in both a free and protein-bound state. While most amino acids are part of a protein backbone, a small percentage of them remain free and play important biological roles, serving as signaling molecules, nitrogen transporters, osmolytes, and precursors for multiple primary and secondary metabolites. Their levels vary widely especially in maize leaves, depending on the developmental stage and in response to environmental conditions.

View Article and Find Full Text PDF

The analysis of protein-bound glycans has gained significant attention due to their pivotal roles in physiological and pathological processes like cell-cell recognition, immune response, and disease progression. Routine methods for glycan analysis are challenged by the very similar physicochemical properties of their carbohydrate components. As an alternative, lectins, which are proteins that specifically bind to glycans, have been integrated into biosensors for glycan detection.

View Article and Find Full Text PDF

Quantitative Imaging of Regional Cerebral Protein Synthesis in Clinical Alzheimer's Disease by [C]Leucine PET.

Mol Imaging Biol

December 2024

Faculty of Biology, Medicine and Health, School of Health Sciences, Division of Informatics, Imaging and Data Sciences, University of Manchester, Manchester, M13 9PL, UK.

Purpose: Protein synthesis is essential to maintain integrity and function of the human brain, and protein synthesis is associated specifically with the formation of long-term memory. Experimental and clinical observations indicate that this process is disturbed in Alzheimer's dementia and other neurodegenerative diseases. In-vivo investigation with positron emission tomography (PET) using [C]leucine provides a unique possibility to measure regional cerebral protein synthesis (rCPS) rates in human brain and to determine whether it is altered in Alzheimer's disease (AD), and thus may provide a target for future therapeutic interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!