Biological ion channels can realize delicate mass transport under complicated physiological conditions. Artificial nanochannels can achieve biomimetic ion current rectification (ICR), gating, and selectivity that are mostly performed in pure salt solutions. Synthetic nanochannels that can function under mixed ion systems are highly desirable, yet their performances are hard to be compared to those under pure systems. Seeking out the potential reasons by investigating the effect of mixed-system components on the ion-transport properties of the constructed nanochannels seems necessary and important. Herein, we report the effect of anions with different charges and sizes on the ICR properties of positively charged nanochannels. Among the investigated anions, the low-valent anions showed no impact on the ICR direction, while the high-valent component ferrocyanide [Fe(CN)] caused significant ICR inversion. The ICR inversion mechanism is evidenced to result from the adsorption of Fe(CN)-induced surface charge reversal, which relates to solution concentration, pH conditions, and nanochannel sizes and applies to both aminated and quaternized nanochannels that are positively charged. Noticeably, Fe(CN) is found to interfere with the transport of protein molecules in the nanochannel. This work points out that the ion species from mixed systems would potentially impact the intrinsic ICR properties of the nanochannels. Replacing highly charged counterions with organic components would be promising in building up future nanochannel-based mass transport systems running under mixed systems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c08263 | DOI Listing |
Sci Adv
January 2025
New Cornerstone Science Laboratory, Department of Physics, The University of Hong Kong, Hong Kong 999077, China.
Real multi-bandgap systems have non-abelian topological charges, with Euler semimetals being a prominent example characterized by real triple degeneracies (RTDs) in momentum space. These RTDs serve as "Weyl points" for real topological phases. Despite theoretical interest, experimental observations of RTDs have been lacking, and studies mainly focus on individual RTDs.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Chemistry, University of California, Berkeley, CA 94720.
Combining Deep-UV second harmonic generation spectroscopy with molecular simulations, we confirm and quantify the specific adsorption of guanidinium cations to the air-water interface. Using a Langmuir analysis of measurements at multiple concentrations, we extract the Gibbs free energy of adsorption, finding it larger than typical thermal energies. Molecular simulations clarify the role of polarizability in tuning the thermodynamics of adsorption, and establish the preferential parallel alignment of guanidinium at the air-water interface.
View Article and Find Full Text PDFChemphyschem
January 2025
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, PS-ISRR, GERMANY.
Two-dimensional layered double hydroxides (LDHs) are ideal candidates for a large number of (bio)catalytic applications due to their flexible composition and easy to tailor properties. Functionality can be achieved by intercalation of amino acids (as the basic units of peptides and proteins). To gain insight on the functionality, we apply resonant inelastic soft x-ray scattering and near edge x-ray absorption fine structure spectroscopy to CaFe LDH in its pristine form as well as intercalated with the amino acids proline and cysteine to probe the electronic structure and its changes upon intercalation.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Biochemical Engineering, School of Chemical Engineering and Technology, State Key Laboratory of Synthetic Biology, Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China.
Organisms that survive at freezing temperatures produce antifreeze proteins (AFPs) to manage ice nucleation and growth. Inspired by AFPs, a series of synthetic materials have been developed to mimic these proteins in order to avoid the limitations of natural AFPs. Despite their great importance in various antifreeze applications, the relationship between structure and performance of AFP mimics remains unclear, especially whether their molecular charge-specific effects on ice inhibition exist.
View Article and Find Full Text PDFAnn Sci
January 2025
Niels Bohr Institute, Copenhagen University, Copenhagen, Denmark.
So-called antimatter in the form of elementary particles such as positive electrons (antielectrons alias positrons) and negative protons (antiprotons) has for long been investigated by physicists. However, atoms or molecules of this exotic kind are conspicuously absent from nature. Since antimatter is believed to be symmetric with ordinary matter, the flagrant asymmetry constitutes a problem that still worries physicists and cosmologists.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!