DNA-RNA complementation on silicon wafer for thyroid cancer determination.

Biotechnol Appl Biochem

Department of Mammary and Thyroid Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, 250013, China.

Published: June 2021

One of the current issues with thyroid tumor is early diagnosis as it makes the higher possibility of curing. This research was focused to detect and quantify the level of specific target sequence complementation of miR-222 with capture DNA sequence on interdigitated electrode (IDE) sensor. The aluminum electrode with the gap and finger sizes of 10 µm was fabricated on silicon wafer, further the surface was amine-functionalized for accommodating carboxylated-DNA probe. With DNA-target RNA complementation, the detection limit was attained to be 1 fM as estimated by a linear regression analysis [y = 1.5325x - 2.1171 R² = 0.9065] and the sensitivity was at the similar level. Current responses were higher by increasing the target RNA sequence concentrations. Control experiments with mismatched/noncomplementary sequences were failed to complement the capture DNA sequence immobilized on IDE, indicating the specific target validation. This research helps diagnosing and identifying the progression with thyroid tumor and miRNA being a potential "marker" in atypia diagnosis.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bab.1961DOI Listing

Publication Analysis

Top Keywords

silicon wafer
8
thyroid tumor
8
specific target
8
capture dna
8
dna sequence
8
dna-rna complementation
4
complementation silicon
4
wafer thyroid
4
thyroid cancer
4
cancer determination
4

Similar Publications

Oxygen-Driven Atom Transfer Radical Polymerization.

J Am Chem Soc

January 2025

State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200438, China.

In traditional atom transfer radical polymerization (ATRP), oxygen must be meticulously eliminated due to its propensity to quench radical species and halt the polymerization process. Additionally, oxygen oxidizes the lower-valent Cu catalyst, compromising its ability to activate alkyl halides and propagate polymerization. In this study, we present an oxygen-driven ATRP utilizing alkylborane compounds, a method that not only circumvents the need for stringent oxygen removal but also exploits oxygen as an essential cofactor to promote polymerization.

View Article and Find Full Text PDF

Here we report a simple self-masking technique for fabricating bioinspired broadband antireflection coatings on both single-crystalline and multicrystalline silicon wafers with the assistance of a polyimide tape. Subwavelength-structured moth-eye nanopillars, which exhibit superior antireflection performance over a broad range of visible and near-IR wavelengths, can be patterned uniformly on the wafer surface by applying a chlorine-based reactive ion etching (RIE) process. The resulting random nanopillars show improved antireflection properties compared with ordered nanopillars templated by colloidal lithography under the same RIE conditions.

View Article and Find Full Text PDF

Despite being a high-resolution separation technique, deterministic lateral displacement (DLD) technology is facing multiple challenges with regard to design, manufacture, and operation of pertinent devices. This work specifically aims at alleviating difficulties associated with design and manufacture of DLD chips. The process of design and production of computer-aided design (CAD) mask layout files that are typically required for computational modeling analysis, optimization, as well as for manufacturing DLD-based micro/nanofluidic chips is complex, time-consuming, and often necessitates a high level of expertise in the field.

View Article and Find Full Text PDF

Analysis of Residual Stress at the Interface of Epoxy-Resin/Silicon-Wafer Composites During Thermal Aging.

Polymers (Basel)

December 2024

Science and Technology on Reliability Physics and Application of Electronic Component Laboratory, China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou 511370, China.

During the thermal aging process of epoxy resin, microcracks, interfacial delamination, and warpage are the key factors leading to semiconductor device damage. Here, epoxy-resin specimens (EP-Ss) and epoxy-resin/silicon-wafer composites (EP-SWs) were prepared to analyze the distribution of residual stress (RS) in epoxy resin and its thermal aging process changes. The uniaxial tensile approach and Raman spectroscopy (RAS) showed that the peak shift of aliphatic C-O in EP-Ss was negatively correlated with the external stress, and that the stress correlation coefficient was -2.

View Article and Find Full Text PDF

Self-powered broadband photodetectors (SPBPDs) hold great potential for next-generation optoelectronic applications, but their performance is often limited by interface defects that impair charge transport and increase recombination losses. In this work, we report the enhancement of the photodetection efficiency of SPBPDs by partially substituting copper (Cu) with silver (Ag) in kesterite CuZnSnS (ACZTS) thin films. Varying Ag concentrations (0%, 2%, 4%, 6%) are incorporated into the CZTS layer, forming a TiO/ACZTS heterojunction in superstrate configuration fabricated via a low-cost sol-gel spin-coating technique with low-temperature open air annealing avoiding conventional postdeposition sulfurization or selenization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!