A facile strategy was introduced for the development of pure MgO and its nanocomposites using different CeO contents (3%-7%) to enhance their magnetic properties and photocatalytic performance. Different morphologies (namely nanoflowers and rhombohedral type nanostructures) were obtained using an in situ hydrothermal method at different concentrations of CeO. X-ray diffraction results revealed that peaks of CeO were observed along with peaks of MgO, which confirms the presence of both phases. The crystallite size and particle size were found to increase with changing CeO content in the host matrix of MgO. Moreover, the band gap reduces while the magnetic character increases with CeO content. The magnetic behaviour of the nanocomposites was elucidated on the basis of oxygen intrinsic defects, which are shown through XPS. EPR measurements were carried out to understand the valence electrons and establish the defects present in the material, which are related to the size of the nanostructures. The degradation of Rose Bengal dye was performed to probe the photocatalytic activity of the MgO@CeO nanocomposites. Hence the facile synthesis of these nanostructures conveyed good magnetic properties along with its application towards dye degradation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab96e8 | DOI Listing |
Mult Scler
January 2025
Rennes University, EHESP, CNRS, Inserm, ARENES UMR 6051, RSMS U 1309, Rennes, France.
Background: Previous studies have shown that people with multiple sclerosis (MS) had frequent healthcare visits up to 10 years before being diagnosed but with no information from magnetic resonance imaging (MRI) scans of the connection with the radiologically isolated syndrome (RIS).
Objective: To analyze healthcare use 3 years before the RIS diagnosis.
Methods: We examined healthcare usage before the first scan in RIS cases from 2010 to 2019.
Sensors (Basel)
December 2024
Department of Biomedical Engineering, Army Medical University, The Third Military Medical University, Chongqing 400038, China.
Magnetic induction phase shift is a promising technology for the detection of cerebral hemorrhage, owing to its nonradioactive, noninvasive, and real-time detection properties. To enhance the detection sensitivity and linearity, a zero-flow sensor was proposed. The uniform primary magnetic field and its counteraction were achieved.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Pharmacy, University of Naples Federico II, 80131 Napoli, Italy.
Thrombin binding aptamer (TBA) is one of the best-known G-quadruplex (G4)-forming aptamers that efficiently binds to thrombin, resulting in anticoagulant effects. TBA also possesses promising antiproliferative properties. As with most therapeutic oligonucleotides, chemical modifications are critical for therapeutic applications, particularly to improve thermodynamic stability, resistance in biological environment, and target affinity.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Shanghai Frontiers Science Research Center of Advanced Textiles, Engineering Research Center of Technical Textiles (Ministry of Education), Key Laboratory of Textile Science & Technology (Ministry of Education), College of Textiles, Donghua University, Shanghai 201620, China.
Microwave absorbers with infrared camouflage are highly desirable in military fields. Self-supporting 3D architectures with tailorable shapes, composed of FeCoNi alloy/carbon nanotubes (CNTs) @ carbon nanofibers (CNFs), were fabricated in this study. On the one hand, multiple loss mechanisms were introduced into the high-elastic sponges.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!