A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Microplastics aggravate the adverse effects of BDE-47 on physiological and defense performance in mussels. | LitMetric

Microplastics aggravate the adverse effects of BDE-47 on physiological and defense performance in mussels.

J Hazard Mater

International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China; Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, 201306, China. Electronic address:

Published: November 2020

The highly hydrophobic surfaces make microplastics a potential carrier of organic pollutants in the marine environment. In order to explore the toxic effects of polybrominated diphenyl ethers (BDE-47) combined with microplastics on marine organisms, we exposed the marine mussel Mytilus coruscus to micro-PS combined with BDE-47 for 21 days to determine the immune defense, oxidative stress and energy metabolism of the mussels. The results showed that the clearance rate (CR) of mussels exposed to single micro-PS, single BDE-47 or both was lower than control group. In general, compared to single BDE-47 exposure, the combination of micro-PS and BDE-47 significantly increased respiration rate (RR), activities of acid phosphatase (ACP) and alkaline phosphatase (ALP), reactive oxygen species (ROS) production and malondialdehyde (MDA) concentrations, but significantly decreased lactate dehydrogenase (LDH) activity and the relative expression of heat shock protein (Hsp70 and 90). Overall, combined stress has more adverse effects on defense performance and energy metabolism in mussels and micro-PS seem to exacerbate the toxicological effects of BDE-47. As microplastics pollution may deteriorate in the future, the health of mussels may be threatened in organically polluted environment, which eventually change the stability of the structure and function of intertidal ecosystem.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2020.122909DOI Listing

Publication Analysis

Top Keywords

adverse effects
8
effects bde-47
8
defense performance
8
energy metabolism
8
metabolism mussels
8
single bde-47
8
bde-47
7
mussels
5
microplastics
4
microplastics aggravate
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!