Macrophages Use Distinct Actin Regulators to Switch Engulfment Strategies and Ensure Phagocytic Plasticity In Vivo.

Cell Rep

Centre for Inflammation Research, University of Edinburgh, Queens Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK. Electronic address:

Published: May 2020

AI Article Synopsis

  • Macrophages are crucial immune cells that must adapt to various challenges, including infections and damaged cells, while efficiently cleaning up dead cells in complex tissue environments.
  • Researchers used Drosophila embryos to explore how macrophages employ different methods of phagocytosis (engulfing cells or debris) to effectively perform their cleanup role.
  • The study revealed that macrophages have two specialized strategies for phagocytosis: "lamellipodial phagocytosis" which involves a protein complex for movement and engagement, and "filopodial phagocytosis," which adapts to spatial constraints, ensuring effective clearance in all conditions.

Article Abstract

Macrophages must not only be responsive to an array of different stimuli, such as infection and cellular damage, but also perform phagocytosis within the diverse and complex tissue environments found in vivo. This requires a high degree of morphological and therefore cytoskeletal plasticity. Here, we use the exceptional genetics and in vivo imaging of Drosophila embryos to study macrophage phagocytic versatility during apoptotic corpse clearance. We find that macrophage phagocytosis is highly robust, arising from their possession of two distinct modes of engulfment that utilize exclusive suites of actin-regulatory proteins. "Lamellipodial phagocytosis" is Arp2/3-complex-dependent and allows cells to migrate toward and envelop apoptotic corpses. Alternatively, Diaphanous and Ena drive filopodial phagocytosis to reach out and draw in debris. Macrophages switch to "filopodial phagocytosis" to overcome spatial constraint, providing the robust plasticity necessary to ensure that whatever obstacle they encounter in vivo, they fulfil their critical clearance function.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7262594PMC
http://dx.doi.org/10.1016/j.celrep.2020.107692DOI Listing

Publication Analysis

Top Keywords

macrophages distinct
4
distinct actin
4
actin regulators
4
regulators switch
4
switch engulfment
4
engulfment strategies
4
strategies ensure
4
ensure phagocytic
4
phagocytic plasticity
4
in vivo
4

Similar Publications

Dormancy is an adaptation in which cells reduce their metabolism, transcription, and translation to stay alive under stressful conditions, preserving the capacity to reactivate once the environment reverts to favorable conditions. Dormancy and reactivation of () are closely linked to intracellular residency within macrophages. Our previous work showed that murine macrophages rely on the viable but not cultivable (VBNC-a dormancy phenotype) fungus from active , with striking differences in immunometabolic gene expression.

View Article and Find Full Text PDF

Patient-specific induced pluripotent stem cells (iPSCs)-based modeling potentially recapitulates the pathology and mechanisms more faithfully than cell line models and general animal models. Utilizing iPSC-derived cells for personalized bone formation research offers a powerful tool to better understand the role of individual differences in bone health and disease and provide more precise information for personalized bone regeneration therapies. Here we generated iPSC-derived mesenchymal progenitor cells (iMPCs), endothelial cells (iECs), and macrophages (iMØ), from different donors.

View Article and Find Full Text PDF

The development of strategies for the prevention and treatment of aseptic loosening of prostheses stands as a critical area of global research interest. The pyroptosis of local macrophages triggered by wear particles plays a pivotal role in the onset of periprosthetic osteolysis and subsequent loosening. Extracellular vesicles, carrying the surface components and regulatory molecules of their parent cells, embody the cellular characteristics and biological functions of these progenitors.

View Article and Find Full Text PDF

Background: Immunotherapy has shown promise for bladder cancer (BC) treatment but is effective only in a subset of patients. Understanding the tumor microenvironment (TME) and its regulators, such as the expression of N6-methyladenosine (m6A) regulators, may improve therapeutic outcomes. This study focuses on the role of IGF2BP2, an m6A reader, in modulating the BC TME.

View Article and Find Full Text PDF

The Dual Roles of Lamin A/C in Macrophage Mechanotransduction.

Cell Prolif

December 2024

Department of Orthodontics, Faculty of Medicine, Justus Liebig University, Giessen, Germany.

Cellular mechanotransduction is a complex physiological process that integrates alterations in the external environment with cellular behaviours. In recent years, the role of the nucleus in mechanotransduction has gathered increased attention. Our research investigated the involvement of lamin A/C, a component of the nuclear envelope, in the mechanotransduction of macrophages under compressive force.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!