Nanosystems are gaining momentum in pharmaceutical sciences because of the wide variety of possibilities for designing these systems to have specific functions. Specifically, studies of new cancer cotherapy drug-vitamin release nanosystems (DVRNs) including anticancer compounds and vitamins or vitamin derivatives have revealed encouraging results. However, the number of possible combinations of design and synthesis conditions is remarkably high. In addition, a large number of anticancer and vitamin derivatives have been already assayed, but a notably less number of cases of DVRNs were assayed as a whole (with the anticancer compound and the vitamin linked to them). Our approach combines with the perturbation theory and machine learning (PTML) model to predict the probability of obtaining an interesting DVRN by changing the anticancer compound and/or the vitamin present in a DVRN that is already tested for other anticancer compounds or vitamins that have not been tested yet as part of a DVRN. In a previous work, we built a linear PTML model useful for the design of these nanosystems. In doing so, we used information fusion (IF) techniques to carry out data enrichment of DVRN data compiled from the literature with the data for preclinical assays of vitamins from the ChEMBL database. The design features of DVRNs and the assay conditions of nanoparticles (NPs) and vitamins were included as multiplicative PT operators (PTOs) to the system, which indicates the importance of these variables. However, the previous work omitted experiments with nonlinear ML techniques and different types of PTOs such as metric-based PTOs. More importantly, the previous work does not consider the structure of the anticancer drug to be included in the new DVRNs. In this work, we are going to accomplish three main objectives (tasks). In the first task, we found a new model, alternative to the one published before, for the rational design of DVRNs using metric-based PTOs. The most accurate PTML model was the artificial neural network model, which showed values of specificity, sensitivity, and accuracy in the range of 90-95% in training and external validation series for more than 130,000 cases (DVRNs vs ChEMBL assays). Furthermore, in the second task, we used IF techniques to carry out data enrichment of our previous data set. In doing so, we constructed a new working data set of >970,000 cases with the data of preclinical assays of DVRNs, vitamins, and anticancer compounds from the ChEMBL database. All these assays have multiple continuous variables or descriptors and categorical variables (conditions of the assays) for drugs (, ), vitamins (, ), and NPs (, ). These data include >20,000 potential anticancer compounds with >270 protein targets (), >580 assay cell organisms (), and so forth. Furthermore, we include >36,000 assay vitamin derivatives in >6200 types of cells (), >120 assay organisms (), >60 assay strains (), and so forth. The enriched data set also contains >20 types of DVRNs () with 9 NP core materials (), 8 synthesis methods (), and so forth. We expressed all this information with PTOs and developed a qualitatively new PTML model that incorporates information of the anticancer drugs. This new model presents 96-97% of accuracy for training and external validation subsets. In the last task, we carried out a comparative study of ML and/or PTML models published and described how the models we are presenting cover the gap of knowledge in terms of drug delivery. In conclusion, we present here for the first time a multipurpose PTML model that is able to select NPs, anticancer compounds, and vitamins and their conditions of assay for DVRN design.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.0c00308DOI Listing

Publication Analysis

Top Keywords

ptml model
24
anticancer compounds
20
compounds vitamins
12
vitamin derivatives
12
previous work
12
data set
12
anticancer
11
data
9
anticancer drugs
8
vitamins
8

Similar Publications

Mood disorders affect the daily lives of millions of people worldwide. The search for more efficient therapies for mood disorders remains an active field of research. In silico approaches can accelerate the search for inhibitors against protein targets related to mood disorders.

View Article and Find Full Text PDF

Ligand-Based Approach for Multi-Target Drug Discovery: PTML Modeling of Triple-Target Inhibitors.

Curr Top Med Chem

August 2024

LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007, Porto, Portugal.

Background: Cancers are complex multi-genetic diseases that should be tackled in multi-target drug discovery scenarios. Computational methods are of great importance to accelerate the discovery of multi-target anticancer agents. Here, we employed a ligand-based approach by combining a perturbation-theory machine learning model derived from an ensemble of multilayer perceptron networks (PTML-EL-MLP) with the Fragment-Based Topological Design (FBTD) approach to rationally design and predict triple-target inhibitors against the cancerrelated proteins named Tropomyosin Receptor Kinase A (TRKA), poly[ADP-ribose] polymerase 1 (PARP-1), and Insulin-like Growth Factor 1 Receptor (IGF1R).

View Article and Find Full Text PDF

Neurodegenerative diseases involve progressive neuronal death. Traditional treatments often struggle due to solubility, bioavailability, and crossing the Blood-Brain Barrier (BBB). Nanoparticles (NPs) in biomedical field are garnering growing attention as neurodegenerative disease drugs (NDDs) carrier to the central nervous system.

View Article and Find Full Text PDF

Introduction: Drug discovery has provided modern societies with the means to fight against many diseases. In this sense, computational methods have been at the forefront, playing an important role in rationalizing the search for novel drugs. Yet, tackling phenomena such as the multi-genic nature of diseases and drug resistance are limitations of the current computational methods.

View Article and Find Full Text PDF

B cell primary thyroid malignant lymphoma (BC-PTML) accounts for 95% of all cases of PTML. However, development of effective treatment and management strategies for BC-PTML is challenging owing to the rarity of this disease. This study assessed data from 1,152 patients in the Surveillance, Epidemiology, and End Results (SEER) database who were diagnosed with BC-PTML during 2000-2015.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!