Enhancing the Performance of a Self-Standing Si/PCNF Anode by Optimizing the Porous Structure.

ACS Appl Mater Interfaces

Institute of Nanoscience and Nanotechnology, Lanzhou University, Lanzhou 730000, China.

Published: June 2020

Embedding silicon nanoparticles into carbon nanofibers is one of the effective methods to fabricate a self-standing and binder-free Si-based anode material for lithium-ion batteries. However, the sluggish Li-ion transport limits the electrochemical performance in the regular strategies, especially under high rate conditions. Herein, a kind of silicon nanoparticle in porous carbon nanofiber structures (Si/PCNFs) has been fabricated through a facile electrospinning and subsequent thermal treatment. By adjusting the mass ratio to 0.4:1, a Si/PCNF anode material with an effective Li-migration pathway and excellent structural stability can be obtained, resulting in an optimal electrochemical performance. Although increasing the mass ratio of PEG to PAN further can lead to a larger pore size and can be beneficial to Li migration, thus being profitable for the rate capacity, the structural stability will get worse at the same time as more defects will form and lead to a weaker C-C binding, thus decrease the cycling stability. Remarkably, the rate capacity reaches 1033.4 mA h g at the current density of 5 A g, and the cycling capacity is 933.2 mA h g at 0.5 A g after 200 cycles, maintaining a retention rate of 80.9% with an initial coulombic efficiency of 83.37%.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c05658DOI Listing

Publication Analysis

Top Keywords

si/pcnf anode
8
anode material
8
electrochemical performance
8
mass ratio
8
structural stability
8
rate capacity
8
enhancing performance
4
performance self-standing
4
self-standing si/pcnf
4
anode optimizing
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!