A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

VX-765 enhances autophagy of human umbilical cord mesenchymal stem cells against stroke-induced apoptosis and inflammatory responses via AMPK/mTOR signaling pathway. | LitMetric

Introduction: To investigate the protective effect of VX-765 on human umbilical mesenchymal stem cells (HUMSCs) in stroke and its mechanism.

Materials And Methods: Mouse models of ischemic stroke were established using the distal middle cerebral artery occlusion (dMCAO) method. The dMCAO mice were accordingly transplanted with HUMSCs, VX-765-treated HUMSCs, or VX-765 + MHY185-treated HUMSCs. The HUMSCs were inserted with green fluorescent protein (GFP) for measurement of transplantation efficiency which was determined by immunofluorescence assay. Oxygen-glucose deprivation (OGD) was applied to mimic ischemic environment in vitro experiments, and the HUMSCs herein were transfected with AMPK inhibitor Compound C or autophagy inhibitor 3-MA. MTT assay was used to test the toxicity of VX-765. TUNEL staining and ELISA were applied to measure the levels of apoptosis and inflammatory cytokines (IL-1β, IL-6, and IL-10), respectively. The expressions of autophagy-associated proteins, AMPK, and mTOR were detected by Western blotting. TTC staining was applied to reveal the infarct lesions in the brain of dMCAO mice.

Results: The pro-inflammatory cytokines, TUNEL-positive cells, and p-mTOR were decreased while the anti-inflammatory cytokine, autophagy-related proteins, and p-AMPK were increased in HUMSCs treated with VX-765 under OGD condition. Different expression patterns were found with the above factors after transfection of 3-MA or Compound C. The pro-inflammatory cytokines, TUNEL-positive cells, and infarct sections were decreased while the anti-inflammatory cytokine and autophagy-related proteins were increased in dMCAO mice transplanted with VX-765-treated HUMSCs compared to those transplanted with HUMSCs only. The autophagy was inhibited while p-mTOR was up-regulated after transfection of MHY.

Conclusion: VX-765 protects HUMSCs against stroke-induced apoptosis and inflammatory responses by activating autophagy via the AMPK/mTOR signaling pathway in vivo and in vitro.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7415204PMC
http://dx.doi.org/10.1111/cns.13400DOI Listing

Publication Analysis

Top Keywords

apoptosis inflammatory
12
humscs
10
human umbilical
8
mesenchymal stem
8
stem cells
8
stroke-induced apoptosis
8
inflammatory responses
8
ampk/mtor signaling
8
signaling pathway
8
dmcao mice
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!