The circadian clock gene PER2 enhances chemotherapeutic efficacy in nasopharyngeal carcinoma when combined with a targeted nanosystem.

J Mater Chem B

Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China. and Department of Neurosurgery, General Hospital of Ningxia Medical University, Yin Chuan, 750004, Ningxia, P. R. China.

Published: June 2020

Treatment failure occurs in more than 40% of advanced nasopharyngeal carcinoma (NPC) patients including local recurrence and distant metastasis due to chemoradioresistance. Circadian clock genes were identified as regulating cancer progression and chemoradiosensitivity in a time-dependent manner. A novel nanosystem can ensure the accumulation and controllable release of chemotherapeutic agents at the tumour site at a set time. In this study, we investigated the expression of circadian clock genes and identified that period circadian regulator 2 (PER2) as a tumour suppressor plays a key role in NPC progression. A label-free proteomic approach showed that PER2 overexpression can inhibit the ERK/MAPK pathway. The chemotherapeutic effect of PER2 overexpression was assessed in NPC together with the nanosystem comprising folic acid (FA), upconverting nanoparticles covalently coupled with Rose Bengal (UCNPs-RB), 10-hydroxycamptothecin (HCPT) and lipid-perfluorohexane (PFH) (FURH-PFH-NPs). PER2 overexpression combined with the targeted and controlled release of nanoagents elevated chemotherapeutic efficacy in NPC, which has potential application value for the chronotherapy of tumours.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0tb00595aDOI Listing

Publication Analysis

Top Keywords

circadian clock
12
per2 overexpression
12
chemotherapeutic efficacy
8
nasopharyngeal carcinoma
8
combined targeted
8
clock genes
8
genes identified
8
per2
5
circadian
4
clock gene
4

Similar Publications

This prospective cohort study is aimed to investigate circadian variations in corneal parameters, focusing on sleep-deprived subjects. Sixty-four healthy individuals (age range: 21-76 years) actively participated in this study, undergoing examinations at least five times within a 24-hour timeframe. The analysis encompassed keratometric parameters of the cornea's front (F) and back (B) surfaces, refractive power in flattest and steepest axes (K1, K2), astigmatism (Astig) and its axis (Axis), aspheric coefficient (Asph), corneal pachymetry values of thinnest corneal thickness (Pachy Min) and corneal thickness in the center of the pupil (Pachy Pupil), volume relative to the 3 and 10 mm corneal diagonal (Vol D3, Vol D10) and surface variance index (ISV).

View Article and Find Full Text PDF

Prokineticin 2 protein is diurnally expressed in PER2 containing clock neurons in the mouse suprachiasmatic nucleus.

Peptides

January 2025

Department of Clinical Biochemistry, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

Expression of prokineticin 2 (PK2) mRNA in the suprachiasmatic nucleus (SCN), also knowns as the brain's clock, exhibits circadian oscillations with peak levels midday, zeitgeber time (ZT) 4, and almost undetectable levels during night. This circadian expression profile has substantially contributed to the suggested role of PK2 as an SCN output molecule involved in transmitting circadian rhythm of behavior and physiology. Due to unreliable specificity of PK2 antibodies, the 81 amino acid protein has primarily been studied at the mRNA level and correlation between circadian oscillating mRNAs and protein products are infrequent.

View Article and Find Full Text PDF

Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs.

View Article and Find Full Text PDF

Circadian biology of cardiac aging.

J Mol Cell Cardiol

December 2024

Kinesiology & Health, University of Wyoming, Laramie, WY, USA; Zoology & Physiology, University of Wyoming, Laramie, WY, USA. Electronic address:

The age of the U.S. population is increasing alongside a growing burden of age-related cardiovascular disease.

View Article and Find Full Text PDF

The abundance and behaviour of all hematopoietic components display daily oscillations, supporting the involvement of circadian clock mechanisms. The daily variations of immune cell functions, such as trafficking between blood and tissues, differentiation, proliferation, and effector capabilities are regulated by complex intrinsic (cell-based) and extrinsic (neuro-hormonal, organism-based) mechanisms. While the role of the transcriptional/translational molecular machinery, driven by a set of well-conserved genes (Clock genes), in nucleated immune cells is increasingly recognized and understood, the presence of non-transcriptional mechanisms remains almost entirely unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!