Two-dimensional nanocoating-enabled orthopedic implants for bimodal therapeutic applications.

Nanoscale

Centre for Future Materials, University of Southern Queensland, Springfield Central, Queensland 4300, Australia and School of Mechanical and Mining Engineering, University of Queensland, Brisbane, Queensland 4072, Australia.

Published: June 2020

As one of the promising orthopedic materials, polyetheretherketone (PEEK) has high chemical durability and similar mechanical properties to the cortical bone; nevertheless, the inherent bioinert nature of PEEK dramatically impedes its broader clinical applications in the management of bone infection. To address this challenge, herein, we developed a multifunctional two-dimensional (2D) nanocoating to assemble graphene oxide (GO) nanosheets, a polydopamine (pDA) nanofilm, and an oligopeptide onto the surface of porous sulfonated PEEK (SPEEK). The resulting multifunctional PEEK implants exhibited enhanced cytocompatibility, alkaline phosphatase activity, and calcium matrix deposition as well as osteogenesis-associated gene expression. Moreover, the animal experiments based on a rabbit femur defect model confirmed that the 2D nanocoating prominently boosted the in vivo osseointegration and bone remodeling. Besides, the GO/pDA hybrid complex anchoring on the SPEEK surface through π-π stacking can generate robust antibacterial phototherapy resulting from the synergetic photothermal/photodynamic therapeutic effects. Accordingly, this work provides a paradigm to empower inert PEEK implants with bi-/multi-modal therapeutic applications, such as against bone infection treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr02327bDOI Listing

Publication Analysis

Top Keywords

therapeutic applications
8
bone infection
8
peek implants
8
peek
5
two-dimensional nanocoating-enabled
4
nanocoating-enabled orthopedic
4
orthopedic implants
4
implants bimodal
4
bimodal therapeutic
4
applications promising
4

Similar Publications

Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells.

STAR Protoc

January 2025

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.

View Article and Find Full Text PDF

A Comprehensive Atlas of AAV Tropism in the Mouse.

Mol Ther

January 2025

Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA. Electronic address:

Gene therapy with Adeno-Associated Virus (AAV) vectors requires knowledge of their tropism within the body. Here we analyze the tropism of ten naturally occurring AAV serotypes (AAV3B, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAVrh8, AAVrh10 and AAVrh74) following systemic delivery into male and female mice. A transgene expressing ZsGreen and Cre recombinase was used to identify transduction in a cell-dependent manner based on fluorescence.

View Article and Find Full Text PDF

Background: SHEN26 (ATV014) is an oral RNA-dependent RNA polymerase (RdRp) inhibitor with potential anti-SARS-CoV-2 activity. Safety, tolerability, and pharmacokinetic characteristics were verified in a Phase I study. This phase II study aimed to verify the efficacy and safety of SHEN26 in COVID-19 patients.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus is hyperglycemia in special populations (pregnant women), however gestational diabetes mellitus (GDM) not only affects maternal health, but also has profound effects on offspring health. The prevalence of gestational diabetes in my country is gradually increasing.

Objective: To study the application effect of self-transcendence nursing model in GDM patients.

View Article and Find Full Text PDF

Arginine metabolism in myeloid cells in health and disease.

Semin Immunopathol

January 2025

Institute for Clinical Chemistry and Laboratory Medicine, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.

Metabolic flexibility is key for the function of myeloid cells. Arginine metabolism is integral to the regulation of myeloid cell responses. Nitric oxide (NO) production from arginine is vital for the antimicrobial and pro-inflammatory responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!